Graduate Theses & Dissertations

Biosynthesis and impact of cytokinins on growth of the oyster mushroom, Pleurotus ostreatus
The oyster mushroom, Pleurotus ostreatus, is one of the most widely cultivated edible basidiomycetes. It has gained increased attention for its economic, environmental, and medicinal properties. While a lot is known about cytokinins (CKs) and their actions at the molecular and cellular levels in plants, much less is known about the function of CKs in other kingdoms. Cytokinins, which have been detected in several fungal species, play a role in pathogenic attack against plants or during plant growth promotion by plant beneficial microbes; however, the role of CKs in fungal physiology, separate from plant associations remains largely unknown. This thesis focuses on the occurrence of fungal-derived CKs in P. ostreatus when grown in vitro as submerged or aerial mycelium. Cytokinin profiling by UHPLC-HRMS/MS revealed that P. ostreatus produces CKs and that the tRNA degradation pathway is the main source of these molecules. CK dynamics within fungal growth supported previous evidence, which suggested that tRNA degradation products have a role in the physiological development of fungi for which CKs act as fungal growth regulators. A second component of the thesis demonstrated that P. ostreatus responds to exogenous applications of aromatic and isoprenoid CKs and their effects were dependent on the dose and CK type. N6-Benzyladenine (BAP), Kinetin (KIN), N6-isopentenyladenine (iP), and trans-zeatin (tZ) bioassays revealed hormone-type responses (hormesis: biphasic response). At low doses, mycelium growth could be stimulated, whereas, at high doses only inhibitory effects were observed. This stimulation/inhibition was observed whether the measured response was an increase/decrease of aerial mycelium colony diameter, biomass accumulation or a change in mycelium morphology as compared to the controls. Results indicated there is potential to alter mycelium growth and development of P. ostreatus; thus, CKs may play the role of a “mycohormone” and may be specifically helpful for medicinal fungi by increasing growth and efficiency to produce many biologically active substances with valuable medical and environmental applications. Author Keywords: cytokinins, fungal-derived CKs, hormesis, mycelium, mycohormone, Pleurotus ostreatus
Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin
The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine’s role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket. Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Campbell
  • (-) ≠ Psychology
  • (-) ≠ Ridgway
  • (-) = Biology
  • (-) = Biochemistry

Filter Results

Date

2014 - 2024
(decades)
Specify date range: Show
Format: 2024/03/28

Author Name

Name (Any)

Degree

Degree Discipline

Subject (Topic)