Graduate Theses & Dissertations

Pages

Expression and characterization of cytochrome b5 from Giardia lamblia
Giardia lamblia is an intestinal parasite found globally in freshwater systems that is responsible for endemic outbreaks of infectious diarrhea. As a unicellular parasite that lacks mitochondria, a respiratory chain and lives in the anaerobic environment of its host's intestine, Giardia was assumed for decades to lack heme proteins. However, its genome encodes several putative heme proteins, including three with sequence similarity to the cytochrome b5 family, referred to as Giardia cytochromes b5 (gCYTb5). Recombinant expression of one of these genes (gCYTb5-I), results in a protein (17-kDa) that is isolated with noncovalently bound heme. Resonance Raman and UV-visible spectra of gCYTb5-I in oxidized and reduced states resemble those of microsomal cytochrome b5, while sequence alignment and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the heme iron. The reduction potential of gCYTb5-I measured by cyclic voltammetry is -165 mV vs the standard hydrogen electrode and is relatively low compared to those of other family members. The amino- and carboxy-terminal sequences that flank the central heme-binding core of the gCYTb5 are highly charged and do not occur in other family members. An 11-kDa core gCYTb5-I variant lacking these flanking sequences was also able to bind heme; however, we observe very poor expression of this truncated protein as compared to the full-length protein. Author Keywords: b-type cytochrome, cytochrome b5, electron transfer protein, Giardia intestinalis, heme/heam protein, spectroelectrochemistry
Effect of SP600125 JNK Inhibitor on Cadmium-Treated Mouse Embryo Forelimb Bud Cells In Vitro
This study investigated the role of the JNK signaling pathway in cadmium-treated mouse embryo forelimb bud cells in vitro. Primary cultures of forelimb bud cells harvested at day 11 of gestation were pre-treated with JNK inhibitor SP600125, and incubated with or without CdCl2 for 15, 30, 60, 120 minutes and 24, 48 hours or 5 days. Endpoints of toxicity were measured through cell differentiation by Alcian Blue Assay and phosphorylation of JNK proteins by Western blot. The results demonstrated that, in the cell differentiation assay, inhibiting JNK activation by 20 μM SP600125 causes an enhanced toxic effect in limb cells and inhibits cell differentiation, whereas 2 μM decreases differentiated nodule numbers under both cadmium stress and normal conditions. In conclusion, the JNK pathway has an essential role in the differentiation processes of limb bud cells in normal growth conditions. Author Keywords: Cadmium, Cell Signaling, JNK, Limbs, Mouse Embryo, Teratology
Cytokinin biosynthesis, signaling and translocation during the formation of tumors in the Ustilago maydis-Zea mays pathosystem
Cytokinins (CKs) are hormones that promote cell division. During the formation of tumors in the Ustilago maydis-Zea mays pathosystem, the levels of CKs are elevated. Although CK levels are increased, the origins of these CKs have not been determined and it is unclear as to whether they promote the formation of tumors. To determine this, we measured the CK levels, identified CK biosynthetic genes as well as CK signaling genes and measured the transcript levels during pathogenesis. By correlating the transcript levels to the CK levels, our results suggest that increased biosynthesis and signaling of CKs occur in both organisms. The increase in CK biosynthesis by the pathosystem could lead to an increase in CK signaling via CK translocation and promote tumor formation. Taken together, these suggest that CK biosynthesis, signaling and translocation play a significant role during the formation of tumors in the Ustilago maydis-Zea mays pathosystem. Author Keywords: Biosynthesis, Cytokinins, Signaling, Translocation, Ustilago maydis, Zea mays
Interactome study of the Giardia intestinalis nuclear localized cytochrome b5
Giardia intestinalis is a waterborne enteric parasite that lacks mitochondria and the capacity for heme biosynthesis. Despite this, Giardia encodes several heme proteins, including four cytochrome b5 isotypes (gCYTB5-I – IV) of unknown function. The aim of this thesis is to gain insight into the function of the Giardia cytochrome b5 isotype III (gCYTB5-III) that is found in the nucleus, as first reported by our laboratory using immunofluorescence microscopy experiments with an isotype-III specific antibody. Nuclear localization of isotype-III is supported by two of my experiments: i) immunoblot analysis of crude cytoplasmic and nuclear enriched fractions of Giardia trophozoites; ii) association of gCYTB5-III with the insoluble fraction of Giardia lysates crosslinked with formaldehyde is reversed by DNase I treatment. To gain an understanding of the possible roles of gCYTB5-III, I performed immunoprecipitation (IP) experiments on lysates from Giardia trophozoites to identify its protein partners. Mass spectroscopy analysis of the immunoprecipitate identified proteins localized to the nucleus (RNA polymerase, DNA topoisomerase, histones, and histone modifying enzymes). Intriguingly, over 40% of the known mitosomal proteome, which functions in iron-sulfur (Fe-S) cluster assembly was also associated with gCYTB5-III. One of these proteins, the flavoenzyme GiOR-1, has been shown to mediate electron transfer from NADPH to recombinant gCYTB5-III. These IP results provide evidence that GiOR-1 and gCYTB5-III interact in vivo, and furthermore, suggest that some proteins in the mitosome could interact with those in the nucleus. I also found that DNA stress, caused by low concentrations of formaldehyde (0.1 – 0.2%) resulted in the increased expression of gCYTB5-III. Collectively these findings suggest a role of gCYTB5-III in Giardia's response to DNA stress and perhaps the formation of Fe/S clusters. Author Keywords: cluster, cytochrome, heme, iron, mitosome, nuclear
Comparative phylogeography in conservation biology
Phylogeographic histories of taxa around the Great Lakes region in North America are relevant to a range of ongoing issues including conservation management and biological invasions. In this thesis I investigated the comparative phylogeographic histories of plant species with disjunct distributions and plant species with continuous distributions around the Great Lakes region; this is a very dynamic geographic area with relatively recent colonisation histories that have been influenced by a range of factors including postglacial landscape modifications, and more recently, human-mediated dispersion. I first characterized four species that have disjunct populations in the Great Lakes region: (Bartonia paniculata subsp. paniculata, Empetrum nigrum, Sporobolus heterolepis, and Carex richardsonii). Through comparisons of core and disjunct populations, I found that a range of historical processes have resulted in two broad scenarios: in the first scenario, genetically distinct disjunct and core populations diverged prior to the last glacial cycle, and in the second scenario more recent vicariant events have resulted in genetically similar core and disjunct populations. The former scenario has important implications for conservation management. I then characterized the Typha species complex (T. latifolia, T. angustifolia, T. x glauca), which collectively represent species with continuous distributions. Recent microevolutionary processes, including hybridization, introgression, and intercontinental dispersal, obscure the phylogeographic patterns and complicate the evolutionary history of Typha spp. around the Great Lakes region, and have resulted in the growing dominance of non-native lineages. A broader geographical comparison of Typha spp. lineages from around the world identified repeated cryptic dispersal and long-distant movement as important phylogeographic influences. This research has demonstrated that comparisons of regional and global evolutionary histories can provide insight into historical and contemporary processes useful for management decisions in conservation biology and invasive species. Author Keywords: chloroplast DNA, conservation genetics, disjunct populations, invasive species, phylogeography, postglacial recolonisation
Genome annotation, gene characterization, and the functional analysis of natural antisense transcripts in the fungal plant pathogen Ustilago maydis
Ustilago maydis (DC) Corda is the causal agent of 'common smut of corn'. Completion of the U. maydis lifecycle is dependent on development inside its host, Zea mays. Symptoms of U. maydis infection include chlorosis and the formation of tumours on all aerial corn tissues. Within the tumours, thick-walled diploid teliospores form; these are the reproductive and dispersal agent for the fungus. U. maydis is the model to study basidiomycete biotrophic plant-pathogen interactions. It holds this status in part because of the completely sequenced 20.5 Mb genome; however, thorough genome annotation is required to fully realize the value of this resource. The research presented here improved U. maydis genome annotation through the analysis of cDNA library sequences and comparative genomics. These analyses identified and characterized pathogenesis-related genes, and identified putative meiosis genes. This enabled the use of U. maydis as a model for investigating 'host-induced' meiosis. Further, the cDNA library analyses identified non-coding RNAs (ncRNAs) and natural antisense transcripts (NATs). NATs are endogenous RNA molecules with regions complementary to a protein-coding transcript. Although NATs have been identified in a wide variety of mammals, plants, and fungi, very few have been functionally characterized. Over 200 U. maydis NATs were annotated by analyzing full-length cDNA sequences. NAT structural features were characterized. Strand-specific RT-PCR was used to detect NATs in U. maydis and in a related smut fungus, U. hordei. The data supported a common role for NATs in smut teliospore development, independent of the RNA interference pathway. Analysis of the expression of one U. maydis NAT, as-um02151, in haploid cells, led to a model for NAT function in U. maydis during teliospore dormancy. This model proposed NATs facilitate the maintenance of stored mRNAs through the formation of double-stranded RNA. In testing this model, it was determined that the deletion of two separate upstream regulatory regions, one of which contained a ncRNA (ncRNA1), altered NAT levels and decreased pathogenesis. These studies strengthened U. maydis as a model organism, and began the functional investigation of NATs in U. maydis, which identified a new class of fungal pathogenesis genes. Author Keywords: cDNA library analysis, genome annotation, mRNA stability, natural antisense transcripts, pathogenesis, Ustilago maydis
Characterizing the demographic history and prion protein gene variation to infer susceptibility to chronic wasting disease in a naïve population of white-tailed deer (Odocoileus virginianus)
Assessments of the adaptive potential of natural populations are essential for understanding and predicting responses to environmental stressors like climate change and infectious disease. The range of stressors species face in a human-dominated landscape, often have contrasting effects. White-tailed deer (Odocoileus virginianus, deer) are expanding in the northern part of their range following decreasing winter severity and increasing forage availability, caused by climate change. Chronic wasting disease (CWD), a prion disease affecting cervids, is likewise expanding and represents a major threat to deer and other cervids We obtained tissue samples from free-ranging deer across their native range in Ontario, Canada which has yet to detect CWD in wild populations of cervids. High throughput sequencing was used to assess neutral genomic variation and variation in the gene responsible for the protein that misfolds into prions when deer contract CWD, known as the PRNP gene. Neutral variation revealed a high number of rare alleles and no population structure, consistent with an expanding population of deer. Functional genetic variation revealed that the frequencies of variants associated to CWD susceptibility and disease progression were evenly distributed across the landscape and the frequencies were consistent with deer populations not infected with CWD. These findings suggest that an observable shift in PRNP allele frequencies likely coincides with the start of a novel CWD epidemic. Sustained surveillance of genomic and genetic variation can be a useful tool for CWD-free regions where deer are managed for ecological and economic benefits. Author Keywords: Canadian wildlife, population genetics, prion, PRNP, RADseq, ungulate
Studies of the Giardia intestinalis trophozoite cell cycle
To study the Giardia intestinalis cell cycle, counterflow centrifugal elutriation (CCE) was used to separate an asynchronous trophozoite culture into fractions enriched for cells at the different stages of the cell cycle. For my first objective, I characterized the appearance of a third peak (Peak iii) in our flow cytometry analysis of the CCE fractions that initially suggested the presence of 16N cells that are either cysts or the result of endoreplication of Giardia trophozoites. I determined that this third peak consists of doublets of the 8N trophozoites at the G2 stage of the cell cycle that were not removed effectively by gating parameters used in the analysis of the flow cytometry data. In the second objective, I tested the use of a spike with RNA from the GS isolate of Giardia as an external normalizer in RT-qPCR on RNA from CCE fractions and encystation cultures of Giardia from the WB isolate. My results showed that the GS RNA spike is as effective as the use of previously characterized internal normalizer genes for these studies. For the third objective, I prepared two sets of elutriation samples for RNA seq analysis to determine the transcriptome of the Giardia trophozoite cell cycle. I confirmed the results of the cell cycle specific expression of several genes we had previously tested by RT-qPCR. Furthermore, our RNA-seq identified many genes in common with those identified from a microarray analysis of the Giardia cell cycle conducted by a collaborator. Finally, I observed an overall <4 fold change in differentially expressed genes during the G1/S and G2/M phase of the cell cycle. This is a modest change in gene expression compared to 10 - 30 fold changes for orthologous genes in mammalian cell cycles. Author Keywords: Cell cycle, Counterflow Centrifugal Elutriation, Flow Cytometry, RNA-sequencing, RT-qPCR
Altered Hippocampal Regulation of Immediate Early Genes after Pentylenetetrazol-Induced Seizures
Seizures induce long-term changes in gene expression in the hippocampus. Experimental evidence has demonstrated a significant effect of epileptic activity on the activity of neurons that participate in complex cognitive and behavioural processes. The present series of experiments involving kindling with subconvulsive doses of PTZ demonstrates a link between seizures and altered immediate early gene expression within the hippocampus and dentate gyrus. In addition, newborn hippocampal neurons were shown to have decreased induction of plasticity-related genes, suggesting deficits in activity-dependent recruitment. These findings may shed light on the mechanisms underlying epileptogenesis and epilepsy-related hippocampal dysfunction in human patients. Author Keywords: hippocampus, IEGs, kindling, neurogenesis, seizures
Characterisation of the Giardia Tata-Binding Protein - Preparation for an in vivo approach
The aim of this work was to identify the DNA sequences recognized by the Giardia TBP (gTBP) in vivo by using a chromatin immunoprecipitation assay (ChIP). Since a specific antibody for the protein of interest is required for this assay, a company was contracted to produce and purify a custom polyclonal antibody from the immunization of rabbits. Recombinant GST-gTBP was produced at a suitable yield and purity and used as the immunogen. The antibody was then tested for reactivity to the native protein in our laboratory. By Western blot analysis, it was possible to observe the enrichment of the gTBP within the nuclear fraction compared to a cytoplasmic fraction extracted from Giardia cells. However, the antibody could not be successfully used in an immunoprecipitation assay - suggesting that the antibody is unable to bind to the native structure of gTBP. Therefore, the focus of this work was changed to analyse gTBP via multiple sequence alignments, homology modelling and BLAST to identify any unique regions that may contribute to its unusual binding characteristics. These techniques were also used to identify specific regions of gTBP that may be used to generate synthetic peptides as immunogens for future antibody production. Author Keywords: ChIP, Giardia intestinalis, Homology modelling, Immunoprecipitation, TATA-binding protein, Western Blotting
Influence of nitrogen and sulfur on cadmium tolerance in Euglena gracilis
Heavy metal pollution threatens human and ecosystem health. E. gracilis was investigated for its potential use in bioremediation due to its tolerance for heavy metals and ability to sequester them from the environment. E. gracilis can remove metals by producing metal binding compounds enriched in sulfur and nitrogen. In this thesis, E. gracilis cultures that were pretreated with elevated levels of sulfur or nitrogen had increased tolerance to CdCl2 compared to non-pretreated cultures. RNA-sequencing revealed that both pretreatments led to transcript level changes and that exposure to CdCl2 led to further transcript level changes. Gene ontology (GO) enrichment analysis reflected changes in nitrogen and sulfur metabolism as well as physiological processes related to metal binding. The data from this thesis revealed important transcription level changes that occur when E. gracilis is challenged with CdCl2 and helps us understand how organisms adapt to heavy metal pollution in the environment. Author Keywords: bioremediation, Cadmium, Euglena gracilis, GO-enrichment, metal-binding, RNA-Sequencing
Exploring the Role of Natural Antisense Transcripts in the Stress Response of Ustilago maydis
Fungal pathogens adapt to environmental changes faster than their hosts, due in part to their adaptive mechanisms exhibited in response to stress. Ustilago maydis was used to investigate potential natural antisense transcript (NAT) RNA-mediated mechanisms that enhance fungal adaptation to stress. Of the 349 NATs conserved amongst U. maydis and two related smut fungi, five NATs were identified as having altered transcript levels in response to multiple stress conditions. Subsequently, antisense transcript expression vectors were created for select NATs and transformed into U. maydis haploid cells. When exposed to stress conditions, two antisense expressing mutant strains exhibited alterations in growth. RT-qPCR analysis of mRNA complementary to expressed NATs revealed no significant change in mRNA levels, which suggests NAT expression may influence stress response through dsRNA formation or other RNA mediated mechanisms. These results establish a basis for further investigations into the connection between NATs and the stress response of fungi. Author Keywords: natural antisense transcripts, non-coding RNAs, stress response, Ustilago maydis

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Master of Arts
  • (-) = Molecular biology

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/29

Degree Discipline