Graduate Theses & Dissertations

Pages

Yearly variation in fall movements of adult female American black bears (Ursus americanus) in central Ontario, Canada
I investigated site fidelity and habitat selection of American black bears (Ursus americanus) from 15 GPS-collared adult females in central Ontario, Canada over nine years. I used generalized linear mixed models to determine the factors affecting between-year variation in fall fidelity and the habitat selection in movement paths. I assessed second and third-order habitat preference by female bears moving between seasonal home ranges. I found that 66% of bears returned to the same fall area between years, expressed as range overlap, influenced negatively by whether they had cubs. When moving between seasonal ranges, bears selected for mixedwood, hardwood and wetlands cover but selected ridge tops over other habitat features at both scales. With increases in climatic uncertainty and habitat fragmentation, these results emphasize the need for wildlife management to consider annual variation in seasonal movements and habitat use by wide-ranging, opportunistic animals. Author Keywords: American black bear, Habitat Selection, Logistic Regression, Site Fidelity
Youth Justice in Canada
Strategies to reduce youth crime have been extensively researched and custody is not found to be effective. In the past, custody was a frequently used sentence, and while under the YOA the number of youth in custody was four times higher than that of adults in Canada. The use of custody sentences in Ontario has decreased in recent years, however; it remains above the Canadian average. Currently, alternatives to custody are also being implemented. This study aimed to gather lived experiences of those with firsthand experience in the youth justice system (offenders and staff). These individuals have working knowledge of effective practices for reducing recidivism. Eighteen semi-structured interviews were conducted. Interviews were coded and analysed using Interpretive Phenomenological Analysis. A number of themes emerged, including various views on the benefits of custody, the importance of relationships, challenges of the job and the need for increased focus on prevention. Author Keywords: Interpretive Phenomenology, Rehabilitation, Treatment, Youth Justice
cascading effects of risk in the wild
Predation risk can elicit a range of responses in prey, but to date little is known about breadth of potential responses that may arise under realistic field conditions and how such responses are linked, leaving a fragmented picture of risk-related consequences on individuals. We increased predation risk in free-ranging snowshoe hares (Lepus americanus) during two consecutive summers by simulating natural chases using a model predator (i.e., domestic dog), and monitored hare stress physiology, energy expenditure, behaviour, condition, and habitat use. We show that higher levels of risk elicited marked changes in physiological stress metrics including sustained high levels of free plasma cortisol which had cascading effects on glucose, and immunology, but not condition. Risk-augmented hares also had lowered daily energy expenditure, spent more time foraging, and decreased rest, vigilance, and travel. It is possible that these alterations allowed risk-exposed hares to increase their condition at the same rate as controls. Additionally, risk-augmented hares selected, had high fidelity to, and were more mobile in structurally dense habitat (i.e., shrubs) which provided them additional cover from predators. They also used more open habitat (i.e., conifer) differently based on locale within the home range, using familiar conifer areas within cores for rest while moving through unfamiliar conifer areas in the periphery. Overall, these findings show that prey can have a multi-faceted, highly plastic response in the face of risk and can mitigate the effects of their stress physiology given the right environmental conditions. Author Keywords: behaviour, condition, daily energy expenditure, predator-prey interactions, snowshoe hare, stress physiology
cis-Cytokinins from the tRNA-degradation pathway impact the phenotype and metabolome of Arabidopsis thaliana
Cis-isomers of the cytokinin plant hormone family are thought to have low activity or impact on plant growth and development. Mutants with independent silencing of the pathway leading to cis-CK (cis-cytokinin) were investigated at the phenotype and metabolite levels. Phenotypic deviations were noted in trichome development, fresh weight, rosette diameter, number of non-rosette leaves, shoot height, delayed flowering, flower number, and carotenoids. Exploratory metabolomic analysis detected a number of metabolite features that have been associated with CK, auxin, and ABA (abscisic acid) activity. Evidence from both phenotype and metabolomic analysis support the hypothesis that cis-CK production is biologically important for plant growth and development. Author Keywords: arabidopsis, cytokinin, IPT, metabolmics
collaborative ecotoxicological risk assessment of in-place pollutants in Owen Sound Bay, Lake Huron within the Saugeen Ojibway Nation Territory
Owen Sound Bay, which is located within the traditional territory of the Saugeen Ojibway Nation (SON), is contaminated as a result of historical industrial and shipping activity. Gross contamination of the sediments in the inner part of the Bay (i.e., Owen Sound Harbour) includes high concentrations of polycyclic aromatic hydrocarbons (PAHs) and other organic compounds, as well as metals that may pose a risk to the SON fishery for lake whitefish (Coregonus clupeaformis). However, evaluating the environmental risks posed by contaminated sediments is a challenge, as these risks are dependent upon several factors and require multiple lines of evidence. Including Indigenous communities in environmental risk assessment and the management of those risks is vital for sustaining ecosystem integrity, as well as respecting Treaty Rights. In this study, a risk assessment framework was developed that included several risk assessment tools used in Western science and also encompassed the concerns and values of the SON, including the application of SON-ecological knowledge. Methods for risk evaluation included gathering lines of evidence though community workshops, as well as field sampling in the Bay to determine the concentrations of PAHs and other organic contaminants in sediments and in the water column. Laboratory studies of toxicity to early life stages of lake whitefish and Japanese medaka (Oryzias latipes) and sediment disturbance simulations to evaluate biological responses in juvenile lake whitefish were also completed as lines of evidence. The results indicate that leaving the harbour “as is” without a thorough analysis of remediation options fails to address the concerns of the people within the SON communities. Overall, this research demonstrated a successful process for developing a collaborative risk assessment framework that recognizes the sovereignty of Indigenous peoples and promotes Nation-to-Nation decision making. Author Keywords: biomarkers, Coregonus clupeaformis, Indigenous knowledge, polycyclic aromatic hydrocarbons, risk assessment, source tracking
effects of Dissolved Organic Matter (DOM) sources on Pb2+, Zn2+ and Cd2+ binding
Metal binding to dissolved organic matter (DOM) determines metal speciation and strongly influences potential toxicity. The understanding of this process, however, is challenged by DOM source variation, which is not always considered by most existing metal speciation models. Source determines the molecular structure of DOM, including metal binding functional groups. This study has experimentally showed that the allochthonous-dominant DOM (i.e. more aromatic and humic) consistently has higher level of Pb binding than the autochthonous-dominant DOM (i.e. more aliphatic and proteinaceous) by more than two orders of magnitude. This source-discrimination, however, is less noticeable for Zn and Cd, although variation still exceeds a factor of four for both metals. The results indicate that metal binding is source-dependent, but the dependency is metal-specific. Accordingly, metal speciation models, such as the Windermere Humic Aqueous Model (WHAM), needs to consider DOM source variations. The WHAM input of active fraction of DOM participating in metal binding (f) is sensitive to DOM source. The commonly-used f = 0.65 substantially overestimated the Pb and Zn binding to autochthonous-dominant DOM, indicating f needs to be adjusted specifically. The optimal f value (fopt) linearly correlates with optical indexes, showing a potential to estimate fopt using simple absorbance and/or fluorescence measurements. Other DOM properties not optically-characterized may be also important to determine fopt, such as thiol, which shows strong affinity to most toxic metals and whose concentrations are appreciably high in natural waters (< 0.1 to 400 nmol L-1). Other analytical techniques rather than Cathodic Stripping Voltammetry (CSV) are required to accurately quantify thiol concentration for DOM with concentration > 1 mg L-1. To better explain the DOM-source effects, the conditional affinity spectrum (CAS) was calculated using a Fully Optimized ContinUous Spectrum (FOCUS) method. This method not only provides satisfactory goodness-of-fit, but also unique CAS solution. The allochthonous-dominant DOM consistently shows higher Pb affinity than autochthonous-dominant DOM. This source-discrimination is not clearly observed for Zn and Cd. Neither the variability of affinity nor capacity can be fully explained by the variability of individual DOM properties, indicating multiple properties may involve simultaneously. Together, the results help improve WHAM prediction of metal speciation, and consequently, benefit geochemical modelling of metal speciation, such as Biotic Ligand Model for predicting metal toxicity. Author Keywords: Dissolved organic matter, Metal binding, Source, Windermere Humic Aqueous Model
effects of environmental variables and dissolved organic matter characteristics on the diffusion coefficient of dissolved organic matter using diffusive gradients in thin films
The efficacy of the diffusive gradients in thin films (DGT) passive samplers to provide accurate measurements of free metal ions and those complexed with dissolved organic matter (DOM) was investigated. DOM controls the diffusive properties of DOM-complexed metal species in natural systems. Knowing the diffusion coeiffiecent (D) for DOM of different molecular weights (MW) and the major environmental variables influencing D is critical in developing the use of DGT passive samplers and understanding labile species. D and MW were determined for natural and standard DOM. No noticeable changes in DOM MW were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. Data analysis revealed that MW had the greatest influence on D, with a negative relationship between D and MW, except in tidal areas where ionic strength influence on D was significant. This study provides further characterization of the variables influencing D using the DGT technique. Author Keywords: Diffusion coefficient, Diffusive gradients in thin films, Dissolved organic matter, Flow field-flow fractionation, Principal Component Analysis, UV-Vis Spectroscopy
effects of heat dissipation capacity on avian physiology and behaviour
In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds. Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch
effects of in-stream woody debris from selective timber harvest on nutrient pools and dynamics within Precambrian Shield streams
Timber harvest can influence the rate of transfer of organic matter from the terrestrial catchment to streams, which may have both direct and indirect effects on in-stream nutrient pools and dynamics. In the interest of developing sustainable forestry practices, the continued study of the effects of forestry on nutrient dynamics in aquatic systems is paramount, particularly in sensitive nutrient-poor oligotrophic systems. The goal of this study was to investigate the impacts of harvest-related woody debris on stream nutrient status in streams located in the Canadian Shield region of south-central Ontario. Surveys showed greater large (> 10 cm) and small (< 10 cm) woody debris dry masses and associated nutrient pools in streams located in recently (2013) selectively harvested catchments, when compared with catchments not harvested for at least 20 years. Experimental releases of flagging tape underlined the importance of woody debris as a mechanism of coarse particulate organic matter (CPOM) retention. Sediment surveys showed a significant exponential decline in both OM content and nutrients associated with coarse sediment with distance upstream from debris dams. Laboratory leaching experiments suggest that fresh woody debris may be an important short-term source of water-soluble nutrients, particularly phosphorus and potassium. This study suggests that woody debris from timber harvest is both a direct and indirect source of nutrients, as trapped wood and leaves that accumulate behind debris dams can augment stream nutrient export over long time periods. Author Keywords: nutrient leaching, nutrient pools, organic matter retention, selection harvest, southern Ontario, woody debris
effects of parasitism on consumer-driven nutrient recycling
Daphnia are keystone consumers in many pelagic ecosystems because of their central role in nutrient cycling. Daphnia are also frequently infected, and the parasites causing these infections may rival their hosts in their ability to regulate ecosystem processes. Therefore, parasitic exploitation of Daphnia may alter nutrient cycling in pelagic systems. This thesis integrates existing knowledge regarding the exploitation of Daphnia magna by 2 endoparasites to predict parasite-induced changes in the nutrient cycling of infected hosts and ecosystems. In chapter 1, I I contextualizing the integration of these themes by reviewing the development of the fields of elemental stoichiometry and parasitology. In chapter 2, we show how the bacterial parasite, Pasteuria ramosa, increased the nitrogen (N) and phosphorus (P) release rates of D. magna fed P-poor diets. We used a mass-balance nutrient release model to show that parasite-induced changes in host nutrient accumulation rates and diet-specific changes in host ingestion rates were responsible for the accelerated nutrient release rates that we observed. In chapter 3, we extended our examination of the nutrient mass balance of infected D. magna to include another parasite, the microsporidian H. tvaerminnensis. We found differences in the effects of these two parasites on host nutrient use as well as support for the hypothesis that parasite-induced changes in Daphnia N release are caused by the effects of infection on Daphnia fecundity. In chapter 4, we examined the relationship between P concentrations and the presence and prevalence of H. tvaerminnensis in rock pools along the Baltic Sea. We found that particulate P concentrations were negatively associated with the prevalence of this parasite, a result that is consistent with the increase in P sequestration of H. tvaerminnensis-infected Daphnia that we observed in chapter 3. I discuss the potential implications of the work presented in chapters 2-4 for other parasite-host systems and ecosystems in chapter 5. Overall, the research presented here suggests that parasite-induced changes in host nutrient use may affect the availability of nutrients in the surrounding environment, and the magnitude of this effect may be linked to parasite-induced reductions in fecundity for many invertebrate hosts. Author Keywords: consumer, ingestion rates, mass-balance, nutrient-recycling, parasitism, phosphorus
effects of particulate matter on the fate and toxicity of silver nanoparticles
As an emerging contaminant, the antimicrobial agent silver nanoparticles (AgNPs) have been receiving considerable attention to determine their potential effects to aquatic ecosystems. However, estimates of aquatic consumer survivorship and other toxicological endpoints vary considerably among experiments, largely due to the environment in which the test takes place. Throughout this thesis I aim to understand which natural environmental variables impact toxicity to the common aquatic consumer Daphnia. I focus on the effects of particulate matter as it may play a role in animal nutrition as well as interact with AgNPs. I explore particulate matter’s effect on survival in the complex matrices including other natural variables that could impact toxicity. I conduct a series of complimentary field and laboratory studies to understand how particles impact AgNP toxicity and how those interactions vary within whole lake ecosystems. Using laboratory studies, I establish that algal particles mitigate the toxic effects of AgNPs on Daphnia survival through removing Ag from the water column and that phosphorus increases this effect. Using wild Daphnia and lake water, I demonstrate the ability of particulate matter to mitigate toxicity in complex natural settings. It was also one of the major predictors of AgNP toxicity to Daphnia along with dissolved organic carbon and daphnid seasonal health. Finally, using a whole lake AgNP addition experiment, I demonstrate that particles and AgNPs interact variably in the lake. Silver from AgNPs binds to particles and is removed to the sediments through the actions of settling particles without impacting the dynamics of living communities. Overall, I am able to demonstrate that the natural components of lake ecosystems, especially particulate matter, are able to mitigate the effects of AgNPs in lake ecosystems to a point where they likely will be never pose a threat to the survivorship of aquatic consumers such as Daphnia. Author Keywords: Daphnia, ecotoxicity, particulate matter, Silver nanoparticles, whole lake experiment
evolutionary ecology of Alaska's mountain goats with management implications
The integration of genetic and environmental information can help wildlife managers better understand the factors affecting a species’ population structure and their response to disturbance. This thesis uses genetic techniques to assess the broad and fine scale population structure of mountain goats in Alaska. The first chapter aims to determine the number of genetically distinct subpopulations and model the demographic history of mountain goats in Alaska. The second chapter investigates the population structure and demographic history of mountain goats in Glacier Bay National Park and examines the impact that climate change will have on these mountain goats. My results indicate that Alaska has eight subpopulations which diverged during the Wisconsin glaciation. In Glacier Bay, population structure is reflective of the landscape during colonization, and mountain goat population density and movement corridors are likely to decline due to future climate change. Author Keywords: Alaska, biogeography, gene flow, landscape genetics, mountain goat, population genetic structure

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Canadian studies

Filter Results

Date

1974 - 2024
(decades)
Specify date range: Show
Format: 2024/03/28