Graduate Theses & Dissertations

Pages

third wheel
Population cycles are regular fluctuations in population densities, however, in recent years many cycles have begun to disappear. With Canada lynx this dampening has also been seen with decreasing latitude corresponding to an increase in prey diversity. My study investigates the role of alternate prey on the stability of the lynx-hare cycle by first comparing the functional responses of two sympatric but ecologically distinct predators on a primary and alternate prey. I then populated a three species predator-prey model to investigate the role of alternate prey on population stability. My results showed that alternate prey can promote stability, though they are unlikely to “stop the cycle”. Furthermore, stability offered by alternate prey is contingent on its ability to increase intraspecific competition. My study highlights that population cycles are not governed by a single factor and that future research needs to be cognizant of interactions between alternate prey and intraspecific competition. Author Keywords: alternate prey, Canis latrans, functional response, Lepus americanus, Lynx canadensis, Tamiasciurus hudsonicus
successful invader in expansion
Researchers have shown increasing interest in biological invasions for the associated ecological and economic impacts as well as for the opportunities they offer to study the mechanisms that induce range expansion in novel environments. I investigated the strategies exhibited by invasive species that facilitate range expansion. Invasive populations exhibit shifts in life-history strategy that may enable appropriate responses to novel biotic and abiotic factors encountered during range expansion. The spatio-temporal scales at which these shifts occur are largely unexplored. Furthermore, it is not known whether the observed dynamic shifts represent a consistent biological response of a given species to range shifts, or whether the shifts are affected by the abiotic characteristics of the new systems. I examined the life-history responses of female round gobies Neogobius melanastomus across fine and coarser spatial scales behind the expansion front and investigated whether invasive populations encountering different environmental conditions (Ontario vs France) exhibited similar life-history shifts. In both study systems, I found an increase in reproductive investment at invasion fronts compared to longer established areas at coarse and fine scales. The results suggest a similar response to range shifts, or a common invasion strategy independent of environmental conditions experienced, and highlight the dynamic nature of an invasive population’s life history behind the invasion front. The second part of my research focused on the development of an appropriate eDNA method for detecting invasive species at early stages of invasion to enable early detection and rapid management response. I developed a simple, inexpensive device for collecting water samples at selected depths for eDNA analysis, including near the substrate where eDNA concentration of benthic species is likely elevated. I also developed a protocol to optimise DNA extraction from water samples that contain elevated concentration of inhibiters, in particular near-bottom samples. Paired testing of eDNA and conventional surveys was used to monitor round goby expansion along its invasion pathway. Round gobies were detected in more sites with eDNA, permitting earlier, more accurate, upstream detection of the expansion front. My study demonstrated the accuracy and the power of using eDNA survey method to locate invasion fronts. Author Keywords: Age-specific reproductive investment, DNA extraction, Energy allocation, Fecundity, Invasion front, Range expansion
spatial and temporal distribution of tabanid (Chrysops, Hybomitra and Tabanus) species in the Nakina district of northwestern Ontario
This thesis focused on expanding knowledge of Hybomitra, Chrysops and Tabanus (Diptera: Tabanidae) distributions north of Lake Nipigon, Ontario, in a managed boreal forest. As land use and climate changes accelerate, there is increased pressure to increase knowledge from which to monitor changes. In 2011 and 2012, 8928 individuals representing, 44 species were captured using sweep netting. Major northward range extensions were observed for Chrysops shermani, C. aberrans and Tabanus fairchildi. Smaller range extensions and in-fills were observed for another 15 species. 23 species had exntensions to their previously known seasonal range. C. carbonarius was the only species that showed an extension to both sides of its season. In general, harvested stands had 50% more individuals and 30% greater species richness than younger stands. A possible link between stand age and interspecific competition was identified. Information has been provided to build baseline of species richness, relative abundance and distribution of Tabanid flies. Author Keywords: diptera, distribution, natural history, northern Ontario, species range, tabanid
regional comparison of the structure and function of benthic macroinvertebrate communities within Precambrian Shield and St. Lawrence lowland lakes in south-central Ontario
Benthic macroinvertebrtes (BMI) are functionally important in aquatic ecosystems; as such, knowledge of their community structure and function is critical for understanding these systems. BMI were sampled from ten lakes in each of two regions of south-central Ontario to investigate which chemical and physical variables could be shaping their community structure and function. Ten Precambrian Shield lakes in the Muskoka-Haliburton region, and ten St Lawrence lowland lakes in the Kawartha lakes region were sampled. These lakes are geologically and chemically distinct, creating natural chemical and physical gradients within and between both regions. Community function was assessed using stable isotope analysis to elucidate carbon transfer dynamics (δ13C) and food web interactions (δ15N). It was predicted that the BMI from Shield lakes would have a δ13C signature indicative of allochthonous carbon subsidies, whereas the lowland lake BMI signatures would reflect autochthonous production. Additionally, it was predicted that the food web length (measured in δ15N units) would be different in Shield and lowland lakes. Both of these predictions were supported; however, the data indicate that δ13C signatures are more likely influenced by catchment geology (represented by bicarbonate concentration) than the extent of allochthony. The best predictor of food web length was found to be region. To assess BMI community structure, taxonomic richness, %EPT (% Ephemeroptera, Plecoptera, Trichoptera; a water quality index), and distribution of functional feeding groups were examined. Based on chemistry it was expected that the Shield lakes would be more speciose, and of greater water quality (relatively lower nutrient levels). These predictions were rejected; since there were no significant regional differences in taxonomic richness or biologically inferred water quality (%EPT). However, sediment size was found to best explain the variability in both metrics, with greater richness and %EPT found at sites with medium and small substrates than those with large substrates. Significant regional differences were found in the distribution of functional feeding groups. Most notably, there were significantly greater proportions of scrapers and shredders in the lowland and Shield lakes, respectively. Based on the feeding mechanisms of these invertebrates it can be inferred that allochthonous subsidies are likely of greater importance to Shield lake BMI communities than those of the lowland lakes; supporting the carbon transfer prediction. These findings provide insight about the structure and function of BMI communities from two dominant lake types in Ontario, and could be useful when determining how future chemical and physical changes will impact these communities. Author Keywords: benthic macroinvertebrates, community function, community structure, Precambrian Shield, stable isotopes, St. Lawrence lowlands
origin and ecological function of an ion inducing anti-predator behaviour in Lithobates tadpoles
Chemical cues are used commonly by prey to identify predation risk in aquatic environments. Previous work has indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in tadpoles. This thesis found that this ion species: (i) is produced by injured tadpoles; (ii) exhibits increased spectral intensity with higher tadpole biomass; and (iii) is not produced by starved predators. These results refute the hypothesis that the ion is a kairomone, and rather support its role as an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S-. Collision induced dissociation (CID) of ion m/z 501 formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, indicating the presence of sulfate. Green frog (Lithobates clamitans) tadpoles exposed to m/z 501, and an industrial analogue, sodium dodecyl sulphate (NaC12H25O4S), exhibited similar anti-predator responses, thereby suggesting the potential role of organic sulfate as a tadpole behavioural alterant. Author Keywords: Alarm cue, Amphibian, Chemical Ecology, Mass spectrometry, Predator-prey interactions
multi-faceted approach to evaluating the detection probability of an elusive snake (Sistrurus catenatus)
Many rare and elusive species have low detection probabilities, thereby imposing unique challenges to monitoring and conservation. Here, we assess the detection probability of the Eastern Massasauga (Sistrurus catenatus) in contrast to a more common and conspicuous species, the Eastern Gartersnake (Thamnophis sirtalis). We found that patterns of detection probability differed between species, wherein S. catenatus was detected less often and under a more specific set of sampling conditions. Correspondingly, detection trials with S. catenatus found a high non-detection rate, while detection trials with artificial models suggest that regional differences in detection probability are driven by variation in population density and habitat use. Our results suggest that current monitoring efforts are not sufficient, and that S. catenatus is frequently undetected. Accordingly, we highlight the importance of species-specific monitoring protocols when monitoring rare and elusive species, and recommend a multi-faceted approach that estimates detection probability and identifies species-specific challenges to monitoring. Author Keywords: detection probability, elusive species, monitoring programs, non-detection, S. catenatus, snakes
mechanistic analysis of density dependence in algal population dynamics
Population density regulation is a fundamental principle in ecology, however there remain several unknowns regarding the functional expression of density dependence. One prominent view is that the patterns by which density dependence is expressed are largely fixed across a species, irrespective of environmental conditions. Our study investigated the expression of density dependence in Chlamydomonas reinhartti grown under a gradient of nutrient densities, and hypothesized that the relationship between per capita growth rate (pgr) and population density would vary from concave-up to concave-down as nutrients became less limiting. Contrary to prediction, we found that the relationship between a population's pgr and density became increasingly concave-up as nutrient levels increased. Our results suggest that density dependence is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density regulation depends extensively on local conditions. Population growth suppression may be attributable to environments with high intraspecific competition. Additional work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time. Author Keywords: Chlamydomonas reinhartti, density dependence, logistic model, population dynamics, single species growth, theta-logistic equation
influence of landscape features on the harvest of caribou (Rangifer tarandus) on the island of Newfoundland
Hunting represents the principal tool for managing populations of migratory caribou (Rangifer tarandus), but harvest may be affected by landscape features that govern animal distribution and hunter access. Such effects are unclear. I capitalized on an existing dataset of 21 355 caribou harvest records, 1980 – 2009, to determine the influence of landscape features on caribou harvest across the island of Newfoundland. Using a landcover map and spatial data for anthropogenic features, I modelled caribou harvest at the island scale for three phases of numerical change (growth in the 1980s, cessation of growth in the 1990s, decline in the 2000s) and harvest type (total harvest, resident harvest of males and females, resident harvest of males, resident harvest of females, and non-resident harvest of males) in relation to multiple putative predictor variables: proportion of lichen cover and distances to nearest forest cut, road, outfitter, transmission line, and town. I did the same analysis for seven individual Caribou Management Areas (CMAs). At the island scale, the number of harvested caribou increased with proximity to the nearest forest cut and with greater proportions of lichen habitat. I attribute this to landscape features that provide forage for caribou, but also access and caribou visibility for hunters. Caribou harvest increased in proximity to transmission lines for the harvest of caribou by resident hunters in the 2000s, which could be a result of more risk-prone foraging Newfoundland caribou. Non-resident hunters harvested greater numbers of male caribou further from towns, likely a result of the placement of outfitter camps and activities. At the management area scale, in most instances, more caribou harvest occurred in close proximity to transmission lines. Proximity to forest cuts and high proportions of lichen were still important landscape features leading to a greater harvest. I conclude that the caribou harvest was largely governed by hunter access and visibility of their prey, augmented by open habitats preferred by caribou. KEYWORDS Caribou, Newfoundland, Rangifer tarandus, harvest, hunting, management area, landscape, human disturbances, game species vulnerability. Author Keywords: caribou, game species vulnerability, harvest, hunting, newfoundland, rangifer tarandus
effects of particulate matter on the fate and toxicity of silver nanoparticles
As an emerging contaminant, the antimicrobial agent silver nanoparticles (AgNPs) have been receiving considerable attention to determine their potential effects to aquatic ecosystems. However, estimates of aquatic consumer survivorship and other toxicological endpoints vary considerably among experiments, largely due to the environment in which the test takes place. Throughout this thesis I aim to understand which natural environmental variables impact toxicity to the common aquatic consumer Daphnia. I focus on the effects of particulate matter as it may play a role in animal nutrition as well as interact with AgNPs. I explore particulate matter’s effect on survival in the complex matrices including other natural variables that could impact toxicity. I conduct a series of complimentary field and laboratory studies to understand how particles impact AgNP toxicity and how those interactions vary within whole lake ecosystems. Using laboratory studies, I establish that algal particles mitigate the toxic effects of AgNPs on Daphnia survival through removing Ag from the water column and that phosphorus increases this effect. Using wild Daphnia and lake water, I demonstrate the ability of particulate matter to mitigate toxicity in complex natural settings. It was also one of the major predictors of AgNP toxicity to Daphnia along with dissolved organic carbon and daphnid seasonal health. Finally, using a whole lake AgNP addition experiment, I demonstrate that particles and AgNPs interact variably in the lake. Silver from AgNPs binds to particles and is removed to the sediments through the actions of settling particles without impacting the dynamics of living communities. Overall, I am able to demonstrate that the natural components of lake ecosystems, especially particulate matter, are able to mitigate the effects of AgNPs in lake ecosystems to a point where they likely will be never pose a threat to the survivorship of aquatic consumers such as Daphnia. Author Keywords: Daphnia, ecotoxicity, particulate matter, Silver nanoparticles, whole lake experiment
effects of heat dissipation capacity on avian physiology and behaviour
In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds. Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch
cascading effects of risk in the wild
Predation risk can elicit a range of responses in prey, but to date little is known about breadth of potential responses that may arise under realistic field conditions and how such responses are linked, leaving a fragmented picture of risk-related consequences on individuals. We increased predation risk in free-ranging snowshoe hares (Lepus americanus) during two consecutive summers by simulating natural chases using a model predator (i.e., domestic dog), and monitored hare stress physiology, energy expenditure, behaviour, condition, and habitat use. We show that higher levels of risk elicited marked changes in physiological stress metrics including sustained high levels of free plasma cortisol which had cascading effects on glucose, and immunology, but not condition. Risk-augmented hares also had lowered daily energy expenditure, spent more time foraging, and decreased rest, vigilance, and travel. It is possible that these alterations allowed risk-exposed hares to increase their condition at the same rate as controls. Additionally, risk-augmented hares selected, had high fidelity to, and were more mobile in structurally dense habitat (i.e., shrubs) which provided them additional cover from predators. They also used more open habitat (i.e., conifer) differently based on locale within the home range, using familiar conifer areas within cores for rest while moving through unfamiliar conifer areas in the periphery. Overall, these findings show that prey can have a multi-faceted, highly plastic response in the face of risk and can mitigate the effects of their stress physiology given the right environmental conditions. Author Keywords: behaviour, condition, daily energy expenditure, predator-prey interactions, snowshoe hare, stress physiology
Yearly variation in fall movements of adult female American black bears (Ursus americanus) in central Ontario, Canada
I investigated site fidelity and habitat selection of American black bears (Ursus americanus) from 15 GPS-collared adult females in central Ontario, Canada over nine years. I used generalized linear mixed models to determine the factors affecting between-year variation in fall fidelity and the habitat selection in movement paths. I assessed second and third-order habitat preference by female bears moving between seasonal home ranges. I found that 66% of bears returned to the same fall area between years, expressed as range overlap, influenced negatively by whether they had cubs. When moving between seasonal ranges, bears selected for mixedwood, hardwood and wetlands cover but selected ridge tops over other habitat features at both scales. With increases in climatic uncertainty and habitat fragmentation, these results emphasize the need for wildlife management to consider annual variation in seasonal movements and habitat use by wide-ranging, opportunistic animals. Author Keywords: American black bear, Habitat Selection, Logistic Regression, Site Fidelity

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Morrison
  • (-) ≠ Brunetti
  • (-) = Ecology

Filter Results

Date

2011 - 2031
(decades)
Specify date range: Show
Format: 2021/12/09