Graduate Theses & Dissertations

Genomic architecture of artificially and sexually selected traits in white-tailed deer (Odocoileus virginianus)
Understanding the complex genomic architecture underlying quantitative traits can provide valuable insight for the conservation and management of wildlife. Despite improvements in sequencing technologies, few empirical studies have identified quantitative trait loci (QTL) via whole genome sequencing in free-ranging mammal populations outside a few well-studied systems. This thesis uses high-depth whole genome pooled re-sequencing to characterize the molecular basis of the natural variation observed in two sexually selected, heritable traits in white-tailed deer (Odocoileus virginianus, WTD). Specifically, sampled individuals representing the phenotypic extremes from an island population of WTD for antler and body size traits. Our results showed a largely homogenous genome between extreme phenotypes for each trait, with many highly differentiated regions throughout the genome, indicative of a quantitative model for polygenic traits. We identified and validated several potential QTL of putatively small-to-moderate effect for each trait, and discuss the potential for real-world application to conservation and management. Author Keywords: evolution, extreme phenotypes, genetics, genomics, quantitative traits, sexual selection
Sex-Specific Graphs
Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life historical traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have investigated the potential effect of sex-specific functional connectivity on genetic structure. The recent uses of Graph Theory in landscape genetics have demonstrated network capacities to describe complex system behaviors where network topology intuitively represents genetic interaction among sub-units. By implementing a sex-specific network approach, our results suggest that Sex-Specific Graphs (SSG) are sensitive to differential male and female dispersal dynamics of a fisher (Martes pennanti) metapopulation in southern Ontario. Our analyses based on SSG topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population-level, could be partitioned among sex-specific strata. We found that female connectivity was negatively affected by snow depth, while being neutral for males. Our findings underlined the potential of conducting sex-specific analysis by identifying landscape elements that promotes or impedes functional connectivity of wildlife populations, which sometimes remains cryptic when studied at the population level. We propose that SSG approach would be applicable to other vagile species where differential sex-specific processes are expected to occur. Author Keywords: genetic structure, Landscape Genetics, Martes pennanti, Population Graph, sex-biased dispersal, Sex-Specific Graphs
Assessment of an adult lake sturgeon translocation (Acipenser fulvescens) reintroduction effort in a fragmented river system
North American freshwater fishes are declining rapidly due to habitat fragmentation, degradation, and loss. In some cases, translocations can be used to reverse local extirpations by releasing species in suitable habitats that are no longer naturally accessible. Lake sturgeon (Acipenser fulvescens) experienced historical overharvest across their distribution, leading to endangered species listings and subsequent protection and recovery efforts. Despite harvest and habitat protections, many populations do not appear to be recovering, which has been attributed to habitat alteration and fragmentation by dams. In 2002, 51 adult lake sturgeon from the Mattagami River, Ontario, Canada were translocated 340 km upstream to a fragmented 35 km stretch of the river between two hydroelectric generating stations, where sturgeon were considered extirpated. This study assessed the translocation effort using telemetry (movement), demographics and genetic data. Within the first year, a portion of the radio-tagged translocated individuals dispersed out of the release area, and released radio-tagged individuals used different areas than individuals radio-tagged ten years later. Catches of juvenile lake sturgeon have increased over time, with 150 juveniles caught within the duration of this study. The reintroduced population had similar genetic diversity as the source population, with a marked reduction in effective population size (Ne). The results indicate that the reintroduction effort was successful, with evidence of successful spawning and the presence of juvenile lake sturgeon within the reintroduction site. Overall, the results suggest adult translocations may be a useful tool for re-establishing other extirpated lake sturgeon populations. Author Keywords: conservation, endangered species, lake sturgeon, reintroduction, telemetry, translocation
Assessing the population genetic structure of the endangered Cucumber tree (Magnolia acuminata) in southwestern Ontario using nuclear and chloroplast genetic markers.
Magnolia acuminata (Cucumber tree) is the only native Magnolia in Canada, where it is both federally and provincially listed as endangered.Magnolia acuminata in Canada can be found inhabiting pockets of Carolinian forest within Norfolk and Niagara regions of southwestern Ontario. Using a combination of nuclear and chloroplast markers, this study assessed the genetic diversity and differentiation of M. acuminata in Canada, compared to samples from the core distribution of this species across the United States. Analyses revealed evidence of barriers to dispersal and gene flow among Ontario populations, although genetic diversity remains high and is in fact comparable to levels of diversity estimated across the much broader range of M. acuminata in the USA. When examining temporal differences in genetic diversity, our study found that seedlings were far fewer than mature trees in Ontario, and in one site in particular, diversity was lower in seedlings than that of the adult trees. This study raises concern regarding the future viability of M. acuminata in Ontario, and conservation managers should factor in the need to maintain genetic diversity in young trees for the long-term sustainability of M. acuminata in Ontario. Author Keywords: conservation genetics, cpDNA, forest fragmentation, Magnolia acuminata, microsatellites, population genetic structure
Genetic Networks to Investigate Structure and Connectivity of Caribou at Multiple Spatial and Temporal Scales
Understanding genetic structure, connectivity, and movement of a species iscritical to management and conservation. Genetic network approaches allow the analysis of genetic information with flexibility and few prior assumptions. In chapter one, I tested the ability of individual-based genetic networks to detect fine-scale structure and connectivity in relation to sampling efforts. My findings revealed individual-based genetic networks can detect fine-scale genetic structure of caribou when using 15 highly variable microsatellite loci. Sampling levels less than 50% of the estimated population size resulted in highly disconnected networks which did not allow for accurate structure analysis; however community detection algorithms were robust in grouping closely related individuals despite low sampling. In chapter two, I used individual-based and population-based genetic networks to investigate structure, connectivity, and movement of caribou across a large study area in Western Canada. A community detection algorithm partitioned the population-based genetic network at multiple spatial scales which uncovered patterns of hierarchical genetic structure and highlighted patterns of gene flow. The hierarchical population structure results aligned with the known distribution of different caribou Designatable Units (DUs) and additional structure was found within each DU. Furthermore, individual-based networks that were constructed with a subset of samples from the Mackenzie Mountains region of the Northwest Territories revealed patterns of long-distance movement and high connectivity across the region. Author Keywords: Biological Conservation, Caribou, Community Detection, Connectivity, Genetic Networks, Structure
Selection on functional genes across a flying squirrel (genus Glaucomys) hybrid zone
While hybridization between distinct taxa can have undesirable implications, it can also result in increased genetic variability and potentially, the exchange of adaptive genes or traits. Adaptive variation acquired through introgressive hybridization may be particularly advantageous for species facing rapid environmental change. I investigated a novel, climate change-induced hybrid zone between two flying squirrel species: the southern (Glaucomys volans) and northern (G. sabrinus) flying squirrel. I was interested in the occurrence of hybridization and introgression, the type of selective pressures maintaining the hybrid zone and the potential for adaptive introgression. I found relatively low hybridization and introgression frequencies (1.7% and 2.9% of the population, respectively) and no evidence of selection on hybrids or backcrosses in particular environments. I conclude that the data are more consistent with a hybrid zone maintained by endogenous (environment-independent) selection. I tested for adaptive introgression using two functional genes: IGF-1 and CLOCK. I documented intermediate functional allele frequencies in backcrosses compared to parental populations, suggesting the alleles do not confer fitness advantages in backcrosses. Despite lack of evidence for current adaptive introgression, genetic admixture between G. volans and G. sabrinus may provide adaptive potential should these species face more rapid or drastic environmental change in the future. Author Keywords: adaptive introgression, flying squirrel, Glaucomys sabrinus, Glaucomys volans, hybridization, introgression
Adaptive Genetic Markers Reveal the Biological Significance and Evolutionary History of Woodland Caribou (Rangifer tarandus caribou) Ecotypes
Migratory and sedentary ecotypes are phenotypic distinctions of woodland caribou. I explored whether I could distinguish between these ecotypes in Manitoba and Ontario using genetic signatures of adaptive differentiation. I anticipated that signatures of selection would indicate genetic structure and permit ecotype assignment of individuals. Cytochrome-b, a functional portion of the mitochondrial genome, was tested for evidence of adaptation using Tajima’s D and by comparing variations in protein physiology. Woodland caribou ecotypes were compared for evidence of contemporary adaptive differentiation in relation to mitochondrial lineages. Trinucleotide repeats were also tested for differential selection between ecotypes and used to assign individuals to genetic clusters. Evidence of adaptive variation in the mitochondrial genome suggests woodland caribou ecotypes of Manitoba and Ontario corresponded with an abundance of functional variation. Woodland caribou ecotypes coincide with genetic clusters, and there is evidence of adaptive differentiation between migratory caribou and certain sedentary populations. Previous studies have not described adaptive variation in caribou using the methods applied in this study. Adaptive differences between caribou ecotypes suggest selection may contribute to the persistence of ecotypes and provides new genetic tools for population assessment. Author Keywords: Adaptation, Cytochrome-B, Ecotype, RANGIFER TARANDUS CARIBOU, Selection, TRINUCLEOTIDE REPEAT
Assessment of Potential Threats to Eastern Flowering Dogwood (Cornus florida) in Southern Ontario
In Canada, eastern flowering dogwood (Cornus florida L.) is an endangered tree that occurs only in the Carolinian forest of southern Ontario. Threats to this species include habitat fragmentation and the fungal pathogen dogwood anthracnose (Discula destructiva). I conducted a population genetic analysis using seven nuclear microsatellite markers to determine if fragmented populations are genetically isolated from one another and have low levels of genetic diversity. Genetic comparisons suggest on-going dispersal among sites and relatively high genetic diversity within most sites; however, smaller populations and younger trees were less genetically diverse. I also used linear mixed effects models to assess potential relationships between several ecological variables and the prevalence of dogwood anthracnose. Disease severity was higher in trees on shallow slopes and in larger trees; the latter also had higher likelihood of infection. Insights from this study will be important to incorporate into future management strategies. Author Keywords: Cornus florida, Discula destructiva, dogwood anthracnose, Eastern flowering dogwood, endangered, population genetics
Development of genetic profiles for paternity analysis and individual identification of the North Atlantic right whale (Eubalaena glacialis)
The endangered North Atlantic right whale (Eubalaena glacialis) has been internationally protected from whaling since 1935 but recovery has been slow compared to the southern right whale (Eubalaena australis) due to anthropogenic mortalities and poor reproduction. Prey availability, genetic variability, and alleles of genes associated with reproductive dysfunction have been hypothesized to contribute to low calf production. The North Atlantic Right Whale DNA Bank and Database contains 1168 samples from 603 individuals. I added 115 new genetic profiles to the database which now contains profiles for 81% of individuals alive since 1980. Paternity assignments using these profiles resulted in 62% of sampled calves being assigned a father and only 38% of candidate males being assigned a paternity. This may suggest false exclusion due to genotyping errors or the existence of an unknown group of males. The use of the DNA database allowed for the identification of 10 deceased individuals which has implications for identifying cause of death and reducing mortalities. However, genetic identification is dependent on the time of post-mortem sample collection which influences DNA quantity and quality. An assessment for variations in methylenetetrahydrofolate reductase, a candidate gene associated with reproductive dysfunction, revealed six females heterozygous for a synonymous A/T variant in exon four which may influence reproductive success through changes in enzyme production, conformation or activity. Author Keywords: Eubalaena glacialis, Forensic Identification, Genetic Profiling, North Atlantic Right Whale, Paternity, Reproductive Dysfunction
Population Genetics and Gut Microbiome Composition Reveal Subdivisions and Space Use in a Generalist and Specialist Ungulate
Natural populations are often difficult and costly to study, due to the plethora of confounding processes and variables present. This is of particular importance when dealing with managed species. Ungulates, for example, act as both consumers and prey sources; they also provide economic benefit through harvest, and as such, are of high ecological and economic value. I addressed conservation and management concerns by quantifying subdivision in wild populations and combined movement with non-invasive sampling to provide novel insight on the physiological drivers of space use in multiple species. This thesis explored biological patterns in ungulates using two distinct approaches: the first used molecular genetics to quantify gene flow, while the second examined the relationship between movement and the gut microbiome using high-throughput sequencing and GPS tracking. The goal of the first chapter was to quantify gene flow and assess the population structure of mountain goats (Oreamnos americanus) in northern British Columbia (BC) to inform management. I used microsatellites to generate genotype data and used a landscape genetics framework to evaluate the possible drivers behind genetic differentiation. The same analyses were performed at both a broad and fine scale, assessing genetic differentiation between populations in all of northern BC and in a case management study area northeast of Smithers BC. The results indicated panmixia among mountain goats regardless of scale, suggesting distance and landscape resistance were minimally inhibiting gene flow. Therefore, management at local scales can continue with little need for genetically informed boundaries, but regulations should be tailored to specific regions incorporating data on local access and harvest pressure. My second chapter aimed to determine the extent to which the gut microbiome drives space-use patterns in a specialist (mountain goat) and generalist (white-tailed deer, Odocoileus virginianus) ungulate. Using fecal samples, we generated genomic data using 16S rRNA high-throughput sequencing to evaluate gut diversity and gut microbiome characteristics. Additionally, individuals were fitted with GPS collars so that we could gain insight into movement patterns. Gut microbiome metrics were stronger predictors of space use and movement patterns with respect to home range size, whereas they were weaker predictors of habitat use. Notably, factors of both the gut microbiome and age of a given species were correlated with changes in space use and habitat use. Ultimately, this research linked high-throughput sequencing and GPS data to better understand ecological processes in wild ungulates. Author Keywords: gene flow, genomics, gut microbiome, home range, population genetic structure, ungulates

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Morrison
  • (-) ≠ Brunetti
  • (-) ≠ Kallikragas
  • (-) = Conservation biology
  • (-) ≠ Doctor of Philosophy
  • (-) = Genetics