Graduate Theses & Dissertations

Pages

Population Genetics and Gut Microbiome Composition Reveal Subdivisions and Space Use in a Generalist and Specialist Ungulate
Natural populations are often difficult and costly to study, due to the plethora of confounding processes and variables present. This is of particular importance when dealing with managed species. Ungulates, for example, act as both consumers and prey sources; they also provide economic benefit through harvest, and as such, are of high ecological and economic value. I addressed conservation and management concerns by quantifying subdivision in wild populations and combined movement with non-invasive sampling to provide novel insight on the physiological drivers of space use in multiple species. This thesis explored biological patterns in ungulates using two distinct approaches: the first used molecular genetics to quantify gene flow, while the second examined the relationship between movement and the gut microbiome using high-throughput sequencing and GPS tracking. The goal of the first chapter was to quantify gene flow and assess the population structure of mountain goats (Oreamnos americanus) in northern British Columbia (BC) to inform management. I used microsatellites to generate genotype data and used a landscape genetics framework to evaluate the possible drivers behind genetic differentiation. The same analyses were performed at both a broad and fine scale, assessing genetic differentiation between populations in all of northern BC and in a case management study area northeast of Smithers BC. The results indicated panmixia among mountain goats regardless of scale, suggesting distance and landscape resistance were minimally inhibiting gene flow. Therefore, management at local scales can continue with little need for genetically informed boundaries, but regulations should be tailored to specific regions incorporating data on local access and harvest pressure. My second chapter aimed to determine the extent to which the gut microbiome drives space-use patterns in a specialist (mountain goat) and generalist (white-tailed deer, Odocoileus virginianus) ungulate. Using fecal samples, we generated genomic data using 16S rRNA high-throughput sequencing to evaluate gut diversity and gut microbiome characteristics. Additionally, individuals were fitted with GPS collars so that we could gain insight into movement patterns. Gut microbiome metrics were stronger predictors of space use and movement patterns with respect to home range size, whereas they were weaker predictors of habitat use. Notably, factors of both the gut microbiome and age of a given species were correlated with changes in space use and habitat use. Ultimately, this research linked high-throughput sequencing and GPS data to better understand ecological processes in wild ungulates. Author Keywords: gene flow, genomics, gut microbiome, home range, population genetic structure, ungulates
Assessment of Potential Threats to Eastern Flowering Dogwood (Cornus florida) in Southern Ontario
In Canada, eastern flowering dogwood (Cornus florida L.) is an endangered tree that occurs only in the Carolinian forest of southern Ontario. Threats to this species include habitat fragmentation and the fungal pathogen dogwood anthracnose (Discula destructiva). I conducted a population genetic analysis using seven nuclear microsatellite markers to determine if fragmented populations are genetically isolated from one another and have low levels of genetic diversity. Genetic comparisons suggest on-going dispersal among sites and relatively high genetic diversity within most sites; however, smaller populations and younger trees were less genetically diverse. I also used linear mixed effects models to assess potential relationships between several ecological variables and the prevalence of dogwood anthracnose. Disease severity was higher in trees on shallow slopes and in larger trees; the latter also had higher likelihood of infection. Insights from this study will be important to incorporate into future management strategies. Author Keywords: Cornus florida, Discula destructiva, dogwood anthracnose, Eastern flowering dogwood, endangered, population genetics
Environmental structure, morphology and spatial ecology of the five-lined skink (Plestiodon fasciatus) at high latitude range limits
Detecting relevant and meaningful patterns from the complex, interconnected network of relationships between organisms and their environment is a primary objective of ecology. Ecological patterns occur across multiple scales of space and time. In this dissertation, I examine aspects of environmental structure that influence a species’ distribution and are expressed in that species’ population dynamics. I compare the morphology of the five-lined skink (Plestiodon fasciatus) near its high latitude range limits with a lower latitude population and evaluate the economics of their behaviour in the context of its reproductive strategy. I tested the conformity of this species to biogeographical rules postulated by MacArthur, Bergmann, and Rensch. Spatial ecology was investigated in the context of the environmental potential for polygamy proposed by Emlen and Oring (1977) The five-lined skink, Plestiodon fasciatus, conformed to these biogeographic rules. Specifically, abiotic factors were the primary limiting factors affecting distribution at the high latitude range limits of the species; body size was larger in high latitude populations; and the degree of sexual size dimorphism was greater at high latitude than at low latitude. Spatial ecology at the individual scale was influenced by sites with suitable thermal conditions which facilitate the polygynandrous mating system documented in P. fasciatus in high latitude populations. My results confirm the importance of microsites with suitable thermal profiles as key habitat for ectothermic vertebrates at high latitudes. The influence of temperature as a limiting abiotic factor is expressed in population density, body size, spatial ecology, and reproductive strategy of P. fasciatus. Conservation and restoration of high latitude populations of ectothermic vertebrates should focus on ensuring thermal requirements of the species of concern are met before other factors are addressed, as temperature is likely the single most important limiting factor at high latitude range limits. Author Keywords: biogeography, lizard, Plestiodon fasciatus, range limits, sexual size dimorphism, spatial ecology
multi-faceted approach to evaluating the detection probability of an elusive snake (Sistrurus catenatus)
Many rare and elusive species have low detection probabilities, thereby imposing unique challenges to monitoring and conservation. Here, we assess the detection probability of the Eastern Massasauga (Sistrurus catenatus) in contrast to a more common and conspicuous species, the Eastern Gartersnake (Thamnophis sirtalis). We found that patterns of detection probability differed between species, wherein S. catenatus was detected less often and under a more specific set of sampling conditions. Correspondingly, detection trials with S. catenatus found a high non-detection rate, while detection trials with artificial models suggest that regional differences in detection probability are driven by variation in population density and habitat use. Our results suggest that current monitoring efforts are not sufficient, and that S. catenatus is frequently undetected. Accordingly, we highlight the importance of species-specific monitoring protocols when monitoring rare and elusive species, and recommend a multi-faceted approach that estimates detection probability and identifies species-specific challenges to monitoring. Author Keywords: detection probability, elusive species, monitoring programs, non-detection, S. catenatus, snakes
Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles
Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding’s turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding’s turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles’ home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding’s turtles and spotted turtles suggests that these habitats do not automatically constitute “unsuitable habitats” for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles. Author Keywords: Blanding’s turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca
Genomic architecture of artificially and sexually selected traits in white-tailed deer (Odocoileus virginianus)
Understanding the complex genomic architecture underlying quantitative traits can provide valuable insight for the conservation and management of wildlife. Despite improvements in sequencing technologies, few empirical studies have identified quantitative trait loci (QTL) via whole genome sequencing in free-ranging mammal populations outside a few well-studied systems. This thesis uses high-depth whole genome pooled re-sequencing to characterize the molecular basis of the natural variation observed in two sexually selected, heritable traits in white-tailed deer (Odocoileus virginianus, WTD). Specifically, sampled individuals representing the phenotypic extremes from an island population of WTD for antler and body size traits. Our results showed a largely homogenous genome between extreme phenotypes for each trait, with many highly differentiated regions throughout the genome, indicative of a quantitative model for polygenic traits. We identified and validated several potential QTL of putatively small-to-moderate effect for each trait, and discuss the potential for real-world application to conservation and management. Author Keywords: evolution, extreme phenotypes, genetics, genomics, quantitative traits, sexual selection
Risk of Mortality for the Semipalmated Plover (Charadrius semipalmatus) Throughout Its Life Cycle
Three long-term mark and recapture/resight data sets of individually marked Semipalmated Plovers (Charadrius semipalmatus) were analyzed using Cormack-Jolly- Seber models. Data came from two breeding populations (Churchill, Manitoba, Canada, n=982, and Egg Island, Alaska, USA, n=84) and one overwintering population (Cumberland Island, Georgia, USA, n=62). For Alaska and Georgia, time-invariant models were best-supported, giving annual survival estimates of 0.67 (95%C.I.: 0.58- 0.76) and 0.59 (95%C.I.: 0.49-0.67) respectively. Data from Manitoba supported a timedependent model: survival estimates varied from 1.00 to 0.36, with lowest estimates from recent years, supporting observations of local population decline. Seasonal survival analysis of the Georgia population indicated lower mortality during winter (monthly Φoverwinter: 0.959, 95%CI: 0.871-0.988; for 6 month period Φoverwinter: 0.780 (0.440-0.929)) than during combined breeding and migratory periods (monthly ΦBreeding+Migration: 0.879 (0.825-0.918); for 8 month ΦBreeding+Migration: 0356 (0.215-0.504)). I recommend, based on high resight rates, continued monitoring of survival of wintering populations, to determine potential range-wide population declines. Keywords: survival, longevity, mortality, shorebird, overwinter, breeding, migration, life cycle Author Keywords: life cycle, longevity, mortality, non-breeding, shorebird, survival
Habitat Characteristics, Density Patterns and Environmental Niches of Indo-Pacific Humpback Dolphins (Sousa chinensis) of the Pearl River Estuary and Eastern Taiwan Strait
The purpose of this thesis is to quantify the habitat characteristics, density patterns and environmental niches of two groups of Indo-Pacific humpback dolphins: Chinese white dolphins (CWD) of the Pearl River estuary (PRE), and Taiwanese white dolphins (TWD, =Taiwanese humpback dolphin, THD) found in the eastern Taiwan Strait (ETS). Much work has already been done on the habitat use of CWDs in parts of the PRE, so the purpose of my first two chapters was to advance knowledge of the TWD to a comparable level. Chapter 2 contains the first published description of the relatively shallow, inshore, estuarine habitat of the TWD. General environmental characteristics and observed group sizes were consistent with other populations of humpback dolphins, and group sizes were not correlated with the environmental variables measured during surveys. Chapter 3 investigated density patterns of TWDs, finding spatiotemporal heterogeneity across the study area. Humpback dolphin densities fluctuated from year to year, but some parts of the study area were consistently used more than others. Environmental characteristics again did not influence dolphin densities, though more dolphins than expected were sighted in waters adjacent to major land reclamations, which may be related to the location of these areas close to major rivers. In Chapter 4, niches of the TWD and CWDs found in the PRE were compared using species distribution models, which indicated significant niche overlap. This may be due to niche conservatism maintaining similar fundamental niches between the two groups since their historical split >10,000 years ago, or a result of the intrinsic biotic factors that influence occurrence data affecting the hypervolume dimensions of each realized niche in similar ways. Geographic predictions indicate that most of the TWD’s range has likely been surveyed, and that there may be connectivity between PRE humpback dolphins and at least one neighbouring putative population due to continuous predicted suitable habitat in waters that remain poorly surveyed. Overall, my thesis demonstrates that density patterns may vary over time, but on a broad temporal scale, these two allopatric groups of Indo-Pacific humpback dolphins have similar habitat requirements in geographically isolated, but environmentally similar locations. Author Keywords: density, habitat, Indo-Pacific humpback dolphin, niche overlap, Sousa chinensis, species distribution model
Assessing Connectivity of Protected Area Networks and the Role of Private Lands in the United States
Forestalling biodiversity loss through the establishment of protected areas is a universally accepted conservation strategy, yet despite established guidelines for protected area coverage and placement, much of the world is currently failing to meet its commitments to conservation planning and landscape protection. Calls for the United States to protect more land usually focus on the need for strategic selection of land parcels to bolster protected area coverage and network functionality, but to date there lacks focused research on either the role of private protected areas in conservation planning or the factors affecting individual protected area selection and importance. We determined gaps in conservation planning in the contiguous United States by analyzing the connectivity of protected area networks by state, and assessing the importance of private protected areas in improving linkages in protected area connectivity. We found that all states had low coverage from protected areas (average <8.4% of total land mass), and especially private protected areas (average <1.1% of total land mass), and that the overall contribution of such areas to protected area network connectivity also was low. Terrain ruggedness was identified as the main factor affecting the current location of protected areas, and that protected area spatial layout is a primary influence on landscape connectivity. We conclude that establishment of private protected areas could offer a viable conservation tool for increasing protected area coverage and connectivity, but that current efforts are inadequate to either adequately link existing protected areas or to meet established land protection guidelines. Author Keywords: Aichi Target 11, conservation planning, graph theory, network theory, private conservation, protected areas
Assessment of an adult lake sturgeon translocation (Acipenser fulvescens) reintroduction effort in a fragmented river system
North American freshwater fishes are declining rapidly due to habitat fragmentation, degradation, and loss. In some cases, translocations can be used to reverse local extirpations by releasing species in suitable habitats that are no longer naturally accessible. Lake sturgeon (Acipenser fulvescens) experienced historical overharvest across their distribution, leading to endangered species listings and subsequent protection and recovery efforts. Despite harvest and habitat protections, many populations do not appear to be recovering, which has been attributed to habitat alteration and fragmentation by dams. In 2002, 51 adult lake sturgeon from the Mattagami River, Ontario, Canada were translocated 340 km upstream to a fragmented 35 km stretch of the river between two hydroelectric generating stations, where sturgeon were considered extirpated. This study assessed the translocation effort using telemetry (movement), demographics and genetic data. Within the first year, a portion of the radio-tagged translocated individuals dispersed out of the release area, and released radio-tagged individuals used different areas than individuals radio-tagged ten years later. Catches of juvenile lake sturgeon have increased over time, with 150 juveniles caught within the duration of this study. The reintroduced population had similar genetic diversity as the source population, with a marked reduction in effective population size (Ne). The results indicate that the reintroduction effort was successful, with evidence of successful spawning and the presence of juvenile lake sturgeon within the reintroduction site. Overall, the results suggest adult translocations may be a useful tool for re-establishing other extirpated lake sturgeon populations. Author Keywords: conservation, endangered species, lake sturgeon, reintroduction, telemetry, translocation
Intra-seasonal Variation in Black Tern Nest-site Selection and Survival
Resources and risk are in constant flux and an organism’s ability to manage change may improve their likelihood of persistence. I examined intra-seasonal variation in nest-site selection and survival of a declining wetland bird, the Black Tern (Chlidonias niger surinamensis). I modelled nest site occupancy and survival of early and late-nesting birds as a function of static and dynamic factors. Early-nesting birds selected nest sites based on the degree and direction of habitat change that occurred over the nesting cycle, while late-nesting birds selected sites based on static conditions near the time of nest-site selection. Nest age had the strongest influence on daily survival rate for both early and late-nesting birds, but the shape of this relationship showed intra-seasonal differences. Additionally, early-season survival improved slightly with increasing vegetation coverage and distance between conspecific nests, while late-season survival increased with clutch size. My results suggest that intra-seasonal variation in nest-site selection and survival is driven by changing habitat conditions and predator behavior. Author Keywords: Black Tern, Chlidonias niger surinamensis, daily survival rate, intra-seasonal variation, nest-site selection
Habitat use within and among roosts of chimney swifts (Chaetura pelagica)
Chimney swifts are listed as Threatened nationally and in many provinces within Canada due to rapid population declines. I examined large-scale spatial variation in the maximum size of chimney swift roosts at the northern edge of their range to identify where larger roosts occur. I used multi-sourced data collected across Ontario and Quebec between 1998 and 2013. I found that larger roosts were found at more northerly latitudes, and that very large roosts (>1000 birds) only occurred north of 45°. I also investigated fine-scale patterns of chimney swift positioning inside one of the largest roosts in Ontario. Using digitally recorded images, I calculated the angular position of swifts inside the roost relative to ambient and roost temperature. I found that swifts showed a strong preference for clinging to the south facing wall and clustered more when ambient air temperature was warmer. Thus, huddling in swifts provides additional or alternate benefits, other than serving purely to reduce costs of thermoregulation at low ambient temperatures. This research contributes to the understanding of chimney swift roosting ecology and identifies large roosting sites that should be retained for conservation. Author Keywords: chimney swift, communal roosting, conservation, group size, social thermoregulation, species-at-risk

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Morrison
  • (-) ≠ Kallikragas
  • (-) = Conservation biology
  • (-) ≠ Biology

Filter Results

Date

2011 - 2031
(decades)
Specify date range: Show
Format: 2021/10/20

Degree Discipline