Graduate Theses & Dissertations

Pages

Assessing habitat suitability and connectivity for an endangered salamander complex
Habitat loss and fragmentation have significantly contributed to amphibian population declines, globally. Evaluating the state of remaining habitat patches can prove to be beneficial in identifying areas to prioritize in conservation efforts. Pelee Island, Ontario is home to a complex of salamanders including small-mouthed salamanders (Ambystoma texanum), blue-spotted salamanders (A. laterale) and unisexual Ambystoma (small-mouthed salamander dependent population). These populations have declined from intense landscape changes since the late 1800s, particularly from the historical drainage of wetlands. In this thesis, I evaluated the suitability and connectivity of habitat patches occupied by these salamanders to assess the size of, and dispersal capabilities between, remaining habitat patches. I found that there was a low amount of suitable terrestrial habitat available for this complex of salamanders, and existing habitat patches were small and isolated. Forested areas and non-breeding wetlands were considered to be suitable habitat when adjacent to existing breeding locations, suggesting that these habitats should be a focus for conservation efforts. Notably, intervention may be necessary to maintain this amphibian complex as many assemblages are isolated from one another and potential corridors currently consist of primarily unsuitable habitat. Given that much of the salamander complex is reliant on one species for reproduction, the long-term viability of this population of Ambystoma salamanders may rely on the enhancement of suitable habitat near current breeding sites by conservation organizations and local stakeholders. Ultimately, the approach used in this thesis emphasizes the value of evaluating habitat within a fragmented landscape to focus conservation efforts on imperilled species. Author Keywords: amphibians, connectivity, habitat suitability, landscape fragmentation, landscape resistance, unisexual
Linking large scale monitoring and spatially explicit capture–recapture models to identify factors shaping large carnivore densities
Understanding the spatial ecology of large carnivores in increasingly complex, multi-use landscapes is critical for effective conservation and management. Complementary to this need are robust monitoring and statistical techniques to understand the effect of bottom-up and top-down processes on wildlife population densities. However, for wide-ranging species, such knowledge is often hindered by difficulties in conducting studies over large spatial extents to fully capture the range of processes influencing populations. This thesis addresses research gaps in the above themes in the context of the American black bear (Ursus americanus) in the multi-use landscape of Ontario, Canada. First, I assess the performance of a widely adopted statistical modelling technique – spatially explicit capture-recapture (SECR) – for estimating densities of large carnivores (Chapter 2). Using simulations, I demonstrate that while SECR models are generally robust to unmodeled spatial and sex-based variation in populations, ignoring high levels of this variation can lead to bias with consequences for management and conservation. In Chapter 3, I investigate fine-scale drivers of black bear population density within study areas and forest regions by applying SECR models to a large-scale, multi-year black bear spatial capture-recapture dataset. To identify more generalizable patterns, in Chapter 4 I then assess patterns of black bear density across the province and within forest regions as a function of coarse landscape-level factors using the same datasets and assess the trade-offs between three different modeling techniques. Environmental variables were important drivers of black bear density across the province, while anthropogenic variables were more important in structuring finer-scale space use within study areas. Within forest regions these variables acted as both bottom-up and top-down processes that were consistent with ecological influences on black bear foods and intensity of human influences on the species’ avoidance of developed habitats. Collectively, this thesis highlights the opportunities and challenges of working across multiple scales and over expansive landscapes within a SECR framework. Specifically, the multi-scale approach of this thesis allows for robust inference of the mechanisms structuring fine and broad scale patterns in black bear densities and offers insight to the relative influence of top-down and bottom-up forces in driving these patterns. Taken together, this thesis provides an approach for monitoring large carnivore population dynamics that can be leveraged for the species conservation and management in increasingly human-modified landscapes. Author Keywords: animal abundance, black bear, capture-recapture, density estimation, statistical ecology, wildlife management
Determinants of Breeding Bird Diversity in Ontario's Far North
190 species of birds are known to breed in Ontario’s far north making the region an important nursery for boreal birds. Digital point count data were collected using two different autonomous recording units (ARUs): one model with two standard microphones to detect birds and anurans, and one model with one standard microphone and one ultrasonic microphone for detecting bats. ARUs were deployed either in short or long-term plots, which were four to six days or approximately 10 weeks, respectively. I assessed differences in breeding bird richness detections between ARU and plot types. I also tested the relative impact of the habitat heterogeneity and species-energy hypotheses in relation to breeding birds and created predictive maps of breeding bird diversity for Ontario’s far north. I found no difference in species richness estimates between the two ARU models but found that long-term plots detected about 7 more bird species and 1.5 more anuran species than short-term plots. I found support for both the species-energy and habitat heterogeneity hypotheses, but support for each hypothesis varied with the resolution of the analysis. Species-energy models were better predictors of breeding bird diversity at coarser resolutions and habitat heterogeneity models were better predictors at finer resolutions. Breeding bird diversity was highest in the Ontario Shield Ecozone compared with the Hudson Bay Lowlands Ecozone, but concentrated areas of higher diversity found in the Lowlands were associated with large rivers and the associated coastlines. Author Keywords: boreal birds, breeding birds, habitat heterogeneity, Hill diversity, Ontario, species-energy hypothesis
Behavioural ecology and population dynamics of freshwater turtles in a semi-urban landscape at their northern range limit
Species are faced with a variety of challenges in the environment, including natural challenges, such as variability in ambient temperature, and anthropogenic threats, such as habitat transformation associated with urbanisation. Understanding how animals respond to these kinds of challenges can advance the field of behavioural ecology and guide management decisions for wild species. Yet, we still have limited understanding of the extent of natural and human-caused impacts on animal behaviour and population dynamics, and lack robust assessment of behaviour in free-ranging animals. Using novel miniaturised biologging technologies, I characterised and validated behaviour in two freshwater turtle species: Blanding’s turtles (Emydoidea blandingii) and Painted turtles (Chrysemys picta). Further, I investigated how these two ectothermic species navigate a thermally heterogeneous landscape near their northern range limit, by comparing selected and available ambient temperatures. I showed that turtles preferred locations that were, on average, warmer and less variable in temperature than the available environment, and that this thermal sensitivity was greatest early in the year, and at fine spatial scales that likely matched the species' perception of the environment. Lastly, I assessed whether urban development was compatible with long-term viability of a Blanding’s turtle population, by monitoring habitat change and turtle survival over one decade of ongoing residential and road development. I found that Blanding’s turtle habitat quantity and connectivity declined in the area, which coincided with high road mortality and severe declines in turtle survival and population size, especially in adult females. I concluded that urban development and current road mortality rates are incompatible with the long-term viability of this at-risk turtle population. Overall, my findings demonstrate the importance of variation in the thermal environment and anthropogenic impacts on habitat in shaping the behaviour and population dynamics of this species-at-risk. Author Keywords: animal behaviour, biologging, ectotherms, habitat selection, temperature, urbanisation
Fall Migratory Behaviour and Cross-seasonal Interactions in Semipalmated Plovers (Charadrius semipalmatus) Breeding in the Hudson Bay Lowlands, Canada
I used the Motus Wildlife Tracking System to monitor the fall migration behaviour and assess the underlying drivers of migration strategy in a small shorebird, the Semipalmated Plover (Charadrius semipalmatus), breeding at two subarctic sites: Churchill, Manitoba and Burntpoint Creek, Ontario, Canada. Semipalmated Plovers from both sites departed breeding areas between mid-July and early August, with females preceding males and failed breeders preceding successful breeders. Migrants showed between and within-population variation in migration behaviour, though birds from both sites tended to follow interior or coastal routes and congregated in three major stopover regions along the mid-Atlantic coast of North America. I found that later-departing birds had initial flight tracks oriented more toward the south, faster overall ground speeds, were less likely to stopover in North America, and stopped at lower latitudes, suggesting that later-departing individuals use aspects of a time-minimizing strategy on fall migration. My findings emphasize the importance of the mid-Atlantic coast for Semipalmated Plovers and establish connectivity between sites used during breeding and migration. Author Keywords: Breeding, Migration, Motus, Semipalmated Plover, Shorebird, Stopover
Prey abundance and habitat during the breeding season for Piping Plovers in the Ontario Great Lakes region
Similar to other shorebird trends around the world, the Piping Plover population (Charadrius melodus circumcinctus) is projected to decline if concerted conservation efforts are relaxed. To date, there is insufficient understanding of the connection between habitat type, prey abundance, and chick behaviour of the Piping Plover breeding population in Ontario. The aim of my thesis was to gain knowledge about prey abundance at recent and historic breeding locations, understanding how habitat influences prey abundance and chick behaviour across the Piping Plover breeding range in Ontario’s Great Lakes. The objective of my first study was to understand prey abundance across the breeding region Great Lakes of Ontario from 2018-2019, including occupied and unoccupied sites, and to quantify variation among habitats and periods of reproduction. To evaluate resources, I sampled 17 locations to compare prey abundance using invertebrate traps (n= 3,507). Sampling took place over the reproductive periods of nest initiation, post-hatch, and fledging and in four habitat types of shoreline, wrack, berm, and back dune. Occupied breeding sites had higher prey abundances, and different assemblages of invertebrate prey than unoccupied sites. Additionally, breeding sites had higher prey abundance during nest initiation and supported higher amounts of prey in shoreline and wrack habitat. The objective of my second study was to understand how habitat types influence chick behaviour. To evaluate behaviour-habitat trends, instantaneous chick observations were recorded at the four nest sites from the post-hatch to fledging stages. In total there were 23 fledged chicks that we observed across the two years. Chicks in this study spent 60.9% of their time foraging, 11.9% of the time displaying alert behaviour, 21.4% of their time resting or being brooded, and 5.9% of their time preening. Chicks spent a large proportion of time foraging in the shoreline, resting in the back dune, and alert in berm habitat. The frequency of these alert, defensive behaviours differed among sites, with Sauble Beach chicks spending more time in defensive behaviours compared to other sites. I concluded that in both nesting and brood-rearing periods, habitat is selected non-randomly by adult and young Piping Plovers to maximize access to invertebrate prey for growth and survival. Access by chicks to the most productive habitats should be considered in local management decisions. Author Keywords: chick behaviour, endangered, Great Lakes Region, habitat, Piping Plovers, prey abundance
Diversity, Biogeography, and Functional Traits of Native Bees from Ontario’s Far North and Akimiski Island, Nunavut
Bees (clade Anthophila), are poorly studied in northern Canada, as these regions can be difficult to access and have a short growing season. This study examined bees from two such regions: Ontario’s Far North, and Akimiski Island, Nunavut. I present this study as the largest biogeographical study of bees performed in these remote areas to enhance knowledge of northern native bees. I found 10 geographically unexpected species in Ontario and on Akimiski Island. Rarefaction and the Chao 1 Diversity Index showed that Akimiski is nearly as diverse as the Far North of Ontario, a significantly larger area. I also found, based on log femur length versus latitude, Bombus worker size was consistent with Bergmann’s rule, and there were no apparent statistical differences in the community weighted means of functional traits between the Far North’s Boreal Shield and Hudson Bay Lowlands ecozones. This work provides invaluable knowledge of the native bee species from these regions, which has implications for their future conservation. Author Keywords: Akimiski Island, Bergmann's rule, Chao 1, Community-weighted means, native bees, rarefaction
Environmental structure, morphology and spatial ecology of the five-lined skink (Plestiodon fasciatus) at high latitude range limits
Detecting relevant and meaningful patterns from the complex, interconnected network of relationships between organisms and their environment is a primary objective of ecology. Ecological patterns occur across multiple scales of space and time. In this dissertation, I examine aspects of environmental structure that influence a species’ distribution and are expressed in that species’ population dynamics. I compare the morphology of the five-lined skink (Plestiodon fasciatus) near its high latitude range limits with a lower latitude population and evaluate the economics of their behaviour in the context of its reproductive strategy. I tested the conformity of this species to biogeographical rules postulated by MacArthur, Bergmann, and Rensch. Spatial ecology was investigated in the context of the environmental potential for polygamy proposed by Emlen and Oring (1977) The five-lined skink, Plestiodon fasciatus, conformed to these biogeographic rules. Specifically, abiotic factors were the primary limiting factors affecting distribution at the high latitude range limits of the species; body size was larger in high latitude populations; and the degree of sexual size dimorphism was greater at high latitude than at low latitude. Spatial ecology at the individual scale was influenced by sites with suitable thermal conditions which facilitate the polygynandrous mating system documented in P. fasciatus in high latitude populations. My results confirm the importance of microsites with suitable thermal profiles as key habitat for ectothermic vertebrates at high latitudes. The influence of temperature as a limiting abiotic factor is expressed in population density, body size, spatial ecology, and reproductive strategy of P. fasciatus. Conservation and restoration of high latitude populations of ectothermic vertebrates should focus on ensuring thermal requirements of the species of concern are met before other factors are addressed, as temperature is likely the single most important limiting factor at high latitude range limits. Author Keywords: biogeography, lizard, Plestiodon fasciatus, range limits, sexual size dimorphism, spatial ecology
multi-faceted approach to evaluating the detection probability of an elusive snake (Sistrurus catenatus)
Many rare and elusive species have low detection probabilities, thereby imposing unique challenges to monitoring and conservation. Here, we assess the detection probability of the Eastern Massasauga (Sistrurus catenatus) in contrast to a more common and conspicuous species, the Eastern Gartersnake (Thamnophis sirtalis). We found that patterns of detection probability differed between species, wherein S. catenatus was detected less often and under a more specific set of sampling conditions. Correspondingly, detection trials with S. catenatus found a high non-detection rate, while detection trials with artificial models suggest that regional differences in detection probability are driven by variation in population density and habitat use. Our results suggest that current monitoring efforts are not sufficient, and that S. catenatus is frequently undetected. Accordingly, we highlight the importance of species-specific monitoring protocols when monitoring rare and elusive species, and recommend a multi-faceted approach that estimates detection probability and identifies species-specific challenges to monitoring. Author Keywords: detection probability, elusive species, monitoring programs, non-detection, S. catenatus, snakes
Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles
Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding’s turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding’s turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles’ home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding’s turtles and spotted turtles suggests that these habitats do not automatically constitute “unsuitable habitats” for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles. Author Keywords: Blanding’s turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca
Risk of Mortality for the Semipalmated Plover (Charadrius semipalmatus) Throughout Its Life Cycle
Three long-term mark and recapture/resight data sets of individually marked Semipalmated Plovers (Charadrius semipalmatus) were analyzed using Cormack-Jolly- Seber models. Data came from two breeding populations (Churchill, Manitoba, Canada, n=982, and Egg Island, Alaska, USA, n=84) and one overwintering population (Cumberland Island, Georgia, USA, n=62). For Alaska and Georgia, time-invariant models were best-supported, giving annual survival estimates of 0.67 (95%C.I.: 0.58- 0.76) and 0.59 (95%C.I.: 0.49-0.67) respectively. Data from Manitoba supported a timedependent model: survival estimates varied from 1.00 to 0.36, with lowest estimates from recent years, supporting observations of local population decline. Seasonal survival analysis of the Georgia population indicated lower mortality during winter (monthly Φoverwinter: 0.959, 95%CI: 0.871-0.988; for 6 month period Φoverwinter: 0.780 (0.440-0.929)) than during combined breeding and migratory periods (monthly ΦBreeding+Migration: 0.879 (0.825-0.918); for 8 month ΦBreeding+Migration: 0356 (0.215-0.504)). I recommend, based on high resight rates, continued monitoring of survival of wintering populations, to determine potential range-wide population declines. Keywords: survival, longevity, mortality, shorebird, overwinter, breeding, migration, life cycle Author Keywords: life cycle, longevity, mortality, non-breeding, shorebird, survival
Tests of the Invasional Meltdown Hypothesis in invasive herbaceous plant species in southern Ontario
According to the Invasional Meltdown Hypothesis (IMH), invasive species may interact in their introduced range and facilitate future invasions. This study investigated the possibility that Alliaria petiolata, an invasive allelopathic herbaceous plant in Ontario, is facilitating invasions by additional alien species. Two allelopathic focal species were chosen for this study: the native Solidago canadensis and the invasive A. petiolata. Field surveys in southern Ontario that quantified plant biodiversity in plots that included one or both focal species revealed no support for the IMH, although fewer species co-existed with A. petiolata than with S. canadensis. A year-long recruitment experiment in Peterborough, Ontario, also produced results inconsistent with the IMH, although did provide some evidence that A. petiolata limited recruitment of other species. These results collectively show negative impacts on regional biodiversity by A. petiolata, even in the absence of an invasional meltdown. Author Keywords: allelopathy, Alliaria petiolata, co-occurrence surveys, invasional meltdown hypothesis, invasive species, Solidago canadensis

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Morrison
  • (-) ≠ Kallikragas
  • (-) = Conservation biology
  • (-) ≠ Fromberger, Monica Ann
  • (-) ≠ Genetics

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/19

Degree Discipline