Graduate Theses & Dissertations

Habitat loss and fragmentation can disrupt population connectivity, resulting in small, isolated populations and low genetic variability. Understanding connectivity patterns in space and time is critical in conservation and management planning, especially for wide-ranging species in northern latitudes where habitats are becoming increasingly fragmented. Wolverines (Gulo gulo) share similar life history traits observed in large-sized carnivores, and their low resiliency to disturbances limits wolverine persistence in modified or fragmented landscapes - making them a good indicator species for habitat connectivity. In this thesis, I used neutral microsatellite and mitochondrial DNA markers to investigate genetic connectivity patterns of wolverines for different temporal and spatial scales. Population genetic analyses of individuals from North America suggested wolverines west of James Bay in Canada are structured into two contemporary genetic clusters: an extant cluster at the eastern periphery of Manitoba and Ontario, and a northwestern core cluster. Haplotypic composition, however, suggested longstanding differences between the extant eastern periphery and northwestern core clusters. Phylogeographic analyses across the wolverine's Holarctic distribution supported a postglacial expansion from a glacial refugium near Beringia. Although Approximate Bayesian computations suggested a west-to-east stepping-stone divergence pattern across North America, a mismatch distribution indicated a historic bottleneck event approximately 400 generations ago likely influenced present-day patterns of haplotype distribution. I also used an individual-based genetic distance measure to identify landscape features potentially influencing pairwise genetic distances of wolverines in Manitoba and Ontario. Road density and mean spring snow cover were positively associated with genetic distances. Road density was associated with female genetic distance, while spring snow cover variance was associated with male genetic distance. My findings suggest that northward expanding anthropogenic disturbances have the potential to affect genetic connectivity. Overall, my findings suggest that (1) peripheral populations can harbour genetic variants not observed in core populations - increasing species genetic diversity; (2) historic bottlenecks can alter the genetic signature of glacial refugia, resulting in a disjunct distribution of unique genetic variants among contemporary populations; (3) increased temporal resolution of the individual-based genetic distance measure can help identify landscape features associated with genetic connectivity within a population, which may disrupt landscape connectivity. Author Keywords: conservation genetics, Holarctic species, landscape genetics, peripheral population, phylogeography, wolverine
Immunogenetic Responses of Raccoons and Skunks to the Raccoon Rabies Virus
Interactions between hosts and pathogens play a crucial role in their adaptation, evolution and persistence. These interactions have been extensively studied in model organisms, yet it is unclear how well they represent mechanisms of disease response in primary vectors in natural settings. The objective of my thesis was to investigate host-pathogen interactions in natural host populations exposed to raccoon rabies virus (RRV). RRV is endemic to North America, that causes acute encephalopathies in mammals and is commonly regarded as 100% lethal if untreated; however variable immune responses have been noted in natural reservoirs. In order to further understand variable immune responses to RRV, my thesis examined (i) potential immunogenetic associations to RRV using genes intimately associated with an immune response, (ii) the nature of immune responses triggered in the host after infection, and (iii) viral expression and genetic variation, to provide insight into factors that may influence RRV virulence. Immunogenetic variation of RRV vectors was assessed using major histocompatibility complex (MHC) DRB alleles. Associations were found between specific MHC alleles, RRV status, and viral lineages. Further, similarities at functionally relevant polymorphic sites in divergent RRV vector species, raccoons and skunks, suggested that both species recognize and bind a similar suite of peptides, highlighting the adaptive significance of MHC and contemporary selective pressures. To understand mechanisms of disease spread and pathogenesis, I screened for variation and expression of genes indicative of innate immune response and patterns of viral gene expression. RRV activated components of the innate immune system, with transcript levels correlated with the presence of RRV. These data indicate that timing of the immune response is crucial in pathogenesis. Expression patterns of viral genes suggest they are tightly controlled until reaching the central nervous system (CNS), where replication increases significantly. These results suggest previous molecular mechanisms for rabies host response derived from mouse models do not strictly apply to natural vector populations. Overall my research provides a better understanding of the immunological factors that contribute to the pathogenesis of RRV in a natural system. Author Keywords: immune response, major histocompatibility complex, rabies, raccoons, skunks, virus
Understanding Historical and Contemporary Gene Flow Patterns of Ontario Black Bears
Consequences of habitat loss and fragmentation include smaller effective population sizes and decreased genetic diversity, factors that can undermine the long-term viability of large carnivores that were historically continuously distributed. I evaluated the historical and contemporary genetic structure and diversity of American black bears (Ursus americanus) in Ontario, where bear habitat is largely contiguous, except for southern regions that experience strong anthropogenic pressures. My objectives were to understand gene flow patterns in a natural system still largely reflective of pre-European settlement to provide context for the extent of genetic diversity loss in southern populations fragmented by anthropogenic influences. Phylogeographic analyses suggested that Ontario black bears belong to a widespread "continental" genetic group that further divides into 2 subgroups, likely reflecting separate recolonization routes around the Great Lakes following the Last Glacial Maximum. Population genetic analyses based on individual genotypes showed that Ontario black bears are structured into 3 contemporary genetic clusters. Two clusters, located in the Northwest (NW) and Southeast (SE), are geographically vast and genetically diverse. The third cluster is less diverse, and spatially restricted to the Bruce Peninsula (BP). Microsatellite analyses revealed that the NW and SE clusters are weakly differentiated from each other relative to mitochondrial DNA findings, suggesting male-biased dispersal and isolation by distance across the province. I also conducted simulations to assess competing hypotheses that could explain the reduced genetic diversity on the BP, which supported a combination of low migration and recent demographic bottlenecks. I showed that management actions to increase genetic variation in BP black bears could include restoring landscape connectivity between BP and SE; however, the irreversible human footprint in the area makes regular translocations from SE individuals a more practical alternative. Overall, my work suggests that: 1) historical genetic processes in Ontario black bears were likely predominated by isolation by distance, 2) large mammalian carnivores such as black bears can become isolated and experience reduced diversity in only a few generations, and 3) maintaining connectivity in regions under increased anthropogenic pressures could prevent populations from becoming small and geographically and genetically isolated, and should be a priority for conserving healthy populations. Author Keywords: American black bear, carnivore, conservation genetics, Ontario, phylogeography, population genetics
Comparative Evaluation of Effective Population Size Genetic Estimation Methods in Wild Brook Trout (Salvelinus fontinalis) Populations
Effective population size (Ne) is a key concept in population genetics, evolutionary biology and conservation biology that describes an important facet of genetic diversity and the capacity of populations to respond to future evolutionary pressures. The importance of Ne in management and conservation of wild populations encouraged the development of numerous genetic estimators which rely on a variety of methods. Despite the number and diversity of available Ne methods, however, tests of estimator performance have largely relied on simulations, with relatively few tests based on empirical data. I used well-studied wild populations of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario as a model system to assess the comparative performance of multiple Ne estimation methods and programs, comparing the resultant Ne estimates against demographic population size estimates. As a first step, the genetic diversity and ancestry of wild brook trout populations was determined using 14 microsatellite loci. Genetic structure of brook trout populations showed variable contributions from historical supplemental stocking and also identified localized gene pools within and between watersheds, reflecting variable levels of connectivity and gene flow. Once the genetic ancestry and connectivity of populations had been resolved, single sample (point) and two samples (temporal) genetic estimators were used to estimate Ne of populations with pure native ancestry. Values obtained from genetic estimators utilizing both methods were variable within as well as among populations. Single sample (point) estimators were variable within individual populations, but substantially less than was observed among the temporal methods. The ratios of Ne to the estimated demographic population size (N) in small populations were substantially higher than in larger populations. Variation among estimates obtained from the different methods reflects varying assumptions that underlay the estimation algorithms. This research further investigated the effect of sampling effort and number of microsatellite loci used on Ne values obtained using the linkage disequilibrium (LD) estimation method. Ne estimates varied substantially among values generated from subsets of loci and genotyped individuals, highlighting the necessity for proper sampling design for efforts aiming to measure Ne. Despite the variation observed among and within estimation methods, the Ne concept is a valuable for the conservation and management of both exploited and endangered species. Author Keywords: Brook Trout, Effective population size, Genetic Diversity, Genetic Structure

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Campbell
  • (-) ≠ Psychology
  • (-) = Kyle
  • (-) ≠ Master of Science

Filter Results


2010 - 2020
Specify date range: Show
Format: 2020/09/23

Author Last Name

Last Name (Other)

Show more

Degree Discipline