Graduate Theses & Dissertations

Pages

Breeding Phenology and Migration Habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands, Canada
Understanding breeding and migration habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands is important for the conservation of this population. I monitored Whimbrel at two breeding sites: the Churchill region of Manitoba and Burntpoint, Ontario. Annual average nest initiation timing was highly variable and successful nests were initiated significantly earlier than those that failed. Although nests were initiated significantly earlier at Burntpoint than Churchill, annual nest success quantified in program R MARK was similar across sites. Observed nest success rates were lower than historical records and most failure was due to predation. Annual nest survival varied widely and I used a generalized linear model to relate annual nest survival to annual average weather conditions. I observed weak relationships between annual nest survival and weather conditions in the northbound staging grounds. I tracked post-breeding migratory movements using the MOTUS radio telemetry system and observed consistent use of the mid-Atlantic coast of the United States during migration, especially among birds emerging from Churchill. In Burntpoint, I observed more variability in post-breeding migratory trajectories and significantly earlier post-breeding departure as compared to Churchill. The results of my study suggest differences in breeding and migration habits exist across nearby breeding populations, indicating that there is a need for population-specific conservation approaches for this declining species. Author Keywords: Migration, Movement Ecology, Nesting Ecology, Nest Success, Shorebird conservation, Whimbrel
Passage population size, demography, and timing of migration of Red Knots (Calidris canutus rufa) staging in southwestern James Bay
Many shorebirds rely on small numbers of staging sites during long annual migrations. Numerous species are declining and understanding the importance of staging sites is critical to successful conservation. We surveyed endangered rufa Red Knots staging in James Bay, Ontario during southbound migration from 2009 to 2018. We used an integrated population model to estimate passage population size in 2017 and 2018 and found that up to 27% of the total rufa population staged in James Bay. We also extended the model to incorporate age composition of the passage population. In future applications, this method could improve our understanding of the role of breeding success in population declines. We then estimated annual apparent survival from 2009 to 2018. Survival remained near constant, though lower than estimated elsewhere in the Red Knot range, which may reflect higher permanent emigration rates rather than truly lower survival. This work demonstrates that this northern region is a key staging site for endangered Red Knots and should be included in conservation planning. Author Keywords: integrated population model, mark-recapture, migratory stopover, shorebirds, species at risk, survival
Environmental structure, morphology and spatial ecology of the five-lined skink (Plestiodon fasciatus) at high latitude range limits
Detecting relevant and meaningful patterns from the complex, interconnected network of relationships between organisms and their environment is a primary objective of ecology. Ecological patterns occur across multiple scales of space and time. In this dissertation, I examine aspects of environmental structure that influence a species’ distribution and are expressed in that species’ population dynamics. I compare the morphology of the five-lined skink (Plestiodon fasciatus) near its high latitude range limits with a lower latitude population and evaluate the economics of their behaviour in the context of its reproductive strategy. I tested the conformity of this species to biogeographical rules postulated by MacArthur, Bergmann, and Rensch. Spatial ecology was investigated in the context of the environmental potential for polygamy proposed by Emlen and Oring (1977) The five-lined skink, Plestiodon fasciatus, conformed to these biogeographic rules. Specifically, abiotic factors were the primary limiting factors affecting distribution at the high latitude range limits of the species; body size was larger in high latitude populations; and the degree of sexual size dimorphism was greater at high latitude than at low latitude. Spatial ecology at the individual scale was influenced by sites with suitable thermal conditions which facilitate the polygynandrous mating system documented in P. fasciatus in high latitude populations. My results confirm the importance of microsites with suitable thermal profiles as key habitat for ectothermic vertebrates at high latitudes. The influence of temperature as a limiting abiotic factor is expressed in population density, body size, spatial ecology, and reproductive strategy of P. fasciatus. Conservation and restoration of high latitude populations of ectothermic vertebrates should focus on ensuring thermal requirements of the species of concern are met before other factors are addressed, as temperature is likely the single most important limiting factor at high latitude range limits. Author Keywords: biogeography, lizard, Plestiodon fasciatus, range limits, sexual size dimorphism, spatial ecology
Disease ecology of ophidiomycosis in free-ranging snakes
Ophidiomycosis (snake fungal disease) is caused by the pathogen Ophidiomyces ophiodiicola. Infected snakes exhibit dermal lesions, occasional systemic infections, and, in some cases, mortality. We studied snakes at Rondeau Provincial Park, Ontario, Canada, to explore whether ophidiomycosis develops during brumation or year-round. Throughout their active season, we quantified the prevalence of clinical signs of the disease on snakes and conducted qPCR of skin swabs to determine the prevalence of O. ophiodiicola on snakes. Prevalence of O. ophiodiicola and disease symptoms were highest on eastern foxsnakes (Pantherophis vulpinus) and very rare on other snake species. In P. vulpinus, pathogen and clinical sign prevalence was highest, directly after emergence from overwintering, with the majority of P. vulpinus being able to resolve clinical signs of ophidiomycosis by the return of winter. When we analyzed the survivorship of P. vulpinus we determined that the likelihood of a snake dying with ophidiomycosis is similar to a snake dying without ophidiomycosis. Given that P. vulpinus were the most affected species at our study site, ophidiomycosis does not appear to pose an imminent threat to our study population of P. vulpinus under current conditions. Author Keywords: Eastern Foxsnake, Fitness, Ophidiomycosis, Pantherophis vulpinus, Seasonal trends, Snake fungal disease
Shorebird Stopover Ecology and Environmental Change at James Bay, Ontario, Canada
I examined how shorebirds respond to environmental change at a key subarctic migratory bird stopover site, the southwestern coast of James Bay, Ontario, Canada. First, I investigated if the morphology of sandpipers using James Bay during southbound migration has changed compared to 40 years prior. I found shorter, more convex and maneuverable wings for sandpipers in the present-day compared to the historical monitoring period, which supports the hypothesis that wing length change is driven by increases in predation risk. Secondly, I assessed the relationship between migration distance, body condition, and shorebird stopover and migratory decisions. Species that travelled farther distances from James Bay to wintering areas migrated with more characteristics of a time-minimizing migration strategy whereas species that travelled shorter distances migrated with energy minimizing strategies. Body condition impacted length of stay, wind selectivity at departure, groundspeeds, and probability of stopover and detection in North America after departing James Bay. Thirdly, I examined annual variation in dry/wet conditions at James Bay and found that shorebirds had lower body mass in years with moderate drought. In the present-day, drought resulted in lower invertebrate abundance and refuelling rates of shorebirds during stopover, which led to shorter stopover duration for juveniles and a higher probability of stopover outside of James Bay for all groups except white-rumped sandpiper. Finally, I estimated the relative importance of intertidal salt marsh and flat habitats to the diets of small shorebirds and found that semipalmated and white-rumped sandpiper (Calidris pusilla and C. fuscicollis) and semipalmated plover (Charadrius semipalmatus) diets consist of ~ 40 – 75% prey from intertidal marsh habitats, the highest documented in the Western Hemisphere for each species. My research shows that James Bay is of high importance to white-rumped sandpipers, which are unlikely to stop in North America after departing James Bay en route to southern South America. Additionally, intertidal salt marsh habitats (and Diptera larvae) appear particularly important for small shorebirds in the region. My thesis shows that changing environmental conditions, such as droughts, can affect shorebird refuelling and stopover strategies. Author Keywords: body condition, diet, environmental change, migration, ornithology, stopover ecology
New Interpretations from Old Data
Range contractions and expansions are important ecological concepts for species management decisions. These decisions relate not only to rare and endangered species but to common and invasive species as well. The development of the broad spatiotemporal extent models that are helpful in examining range fluctuations can be challenging given the lack of data expansive enough to cover the time periods and geographic extents needed to fit the models. Archival records such as museum databases and harvest data can provide the spatiotemporal extent needed but present statistical challenges given they represent presence-only location information. In this thesis, I used maximum entropy and Bayesian hierarchical occupancy algorithms fitted with archival presence-only records to develop spatiotemporal models covering broad spatial and temporal extents for snowshoe hare and Canada lynx. These two algorithm types are well suited for presence-only data records and can be adapted to include biological and physical processes, thus improving the ecological realism of the models. Using these modelling methods, I found the extent of occurrence (EOO) and area of occupancy (AOO) varied greatly over time and space for both snowshoe hare and Canada lynx, suggesting that management decisions for these species should include consideration of these variations. While the presence-only data were appropriate for model development and understanding changing values in EOO and AOO, it sometimes lacked the locational accuracy and precision needed to create fine scale ecological analyses, thus resulting in somewhat coarse but potentially relevant conclusions. Author Keywords: Area of occupancy, Bayesian hierarchical models, Canada lynx, Extent of occurrence, Presence-only data, Snowshoe hare
Intra-seasonal Variation in Black Tern Nest-site Selection and Survival
Resources and risk are in constant flux and an organism’s ability to manage change may improve their likelihood of persistence. I examined intra-seasonal variation in nest-site selection and survival of a declining wetland bird, the Black Tern (Chlidonias niger surinamensis). I modelled nest site occupancy and survival of early and late-nesting birds as a function of static and dynamic factors. Early-nesting birds selected nest sites based on the degree and direction of habitat change that occurred over the nesting cycle, while late-nesting birds selected sites based on static conditions near the time of nest-site selection. Nest age had the strongest influence on daily survival rate for both early and late-nesting birds, but the shape of this relationship showed intra-seasonal differences. Additionally, early-season survival improved slightly with increasing vegetation coverage and distance between conspecific nests, while late-season survival increased with clutch size. My results suggest that intra-seasonal variation in nest-site selection and survival is driven by changing habitat conditions and predator behavior. Author Keywords: Black Tern, Chlidonias niger surinamensis, daily survival rate, intra-seasonal variation, nest-site selection
Impact of Agricultural Land Use on Bobolink Occurrence, Abundance, and Reproductive Success in an Alvar Landscape
Pastures and hayfields provide surrogate habitat for many declining grassland birds. Understanding agricultural land use dynamics and habitat quality can impact conservation of grassland species. I investigated 1) patterns of land use change in protected and unprotected sites in relationship to Bobolink occurrence in Carden, Ontario, Canada and 2) whether continuous grazing at lowmoderate cattle densities provided suitable breeding habitat, using both real and artificial nests. I replicated the 2001-2005 Ontario Breeding Bird Atlas to evaluate site habitat changes and Bobolink population trends. In continuously grazed pastures and late-cut hayfields, I monitored Bobolink abundance and reproductive success and modeled daily survival rate of nests using habitat management, vegetation structure, and prey availability. Results indicated that Bobolink have declined by -15.3% since 2001 in Carden; losses were explained almost entirely by changes from suitable breeding habitat (e.g. hayfields) to tilled land or by the colonization of shrubs. For pastures, stocking densities of ≤ 1Animal Units/ha did not negatively impact Bobolink. Year and caterpillar biomass, and vegetation height were the strongest predictors of nesting success in pastures and hayfields, respectively. Focus on the preservation of suitable habitat on the breeding grounds and management on small-scale beef farms can contribute to conservation action for this declining species. Author Keywords: agricultural management, avian ecology, Bobolink, continuous grazing, grassland birds, nest success
Using DNA Barcoding to Investigate the Diet and Food Supply of a Declining Aerial Insectivote, the Barn Swallow (Hirundo rustica)
Barn Swallow (Hirundo rustica) populations have declined in North America over the past 40 years and they are listed as Threatened in Ontario, Canada. Changes in the food supply have been hypothesized as a potential cause of this population decline. I used DNA barcoding to investigate the diet and food supply of Barn Swallows and to determine if the food supply affects their reproductive performance. In two breeding seasons, I monitored nests, collected fecal samples, and monitored prey availability by collecting insects from the habitat surrounding breeding sites using Malaise traps. I used DNA barcoding to identify insect specimens collected from the habitat and to identify prey items from Barn Swallow nestling fecal samples. I found that Barn Swallow nestlings were fed a very broad range of prey items but were fed larger prey items more frequently. Prey availability was not related to the timing of reproduction, the number of nests at a breeding site, or the reproductive output of individual nests. This study provides information on the diet composition of Barn Swallows in North America and suggests that food limitation during the breeding season may not be a major factor in their population decline. Author Keywords: aerial insectivore, diet, DNA barcoding, Hirundo rustica, metabarcoding, reproductive success
Habitat use within and among roosts of chimney swifts (Chaetura pelagica)
Chimney swifts are listed as Threatened nationally and in many provinces within Canada due to rapid population declines. I examined large-scale spatial variation in the maximum size of chimney swift roosts at the northern edge of their range to identify where larger roosts occur. I used multi-sourced data collected across Ontario and Quebec between 1998 and 2013. I found that larger roosts were found at more northerly latitudes, and that very large roosts (>1000 birds) only occurred north of 45°. I also investigated fine-scale patterns of chimney swift positioning inside one of the largest roosts in Ontario. Using digitally recorded images, I calculated the angular position of swifts inside the roost relative to ambient and roost temperature. I found that swifts showed a strong preference for clinging to the south facing wall and clustered more when ambient air temperature was warmer. Thus, huddling in swifts provides additional or alternate benefits, other than serving purely to reduce costs of thermoregulation at low ambient temperatures. This research contributes to the understanding of chimney swift roosting ecology and identifies large roosting sites that should be retained for conservation. Author Keywords: chimney swift, communal roosting, conservation, group size, social thermoregulation, species-at-risk
Time to adapt
To better understand species’ resilience to climate change and implement solutions, we must conserve environments that maintain standing adaptive genetic variation and the potential generation of new beneficial alleles. Coding trinucleotide repeats (cTNRs) providing high-pace adaptive capabilities via high rates of mutation are ideal targets for mitigating the decline of species at risk by characterizing adaptively significant populations. Ultimately, adaptive genetic information will inform the protection of biological diversity below the species level (i.e., “Evolutionarily Significant Units” or “ESUs”). This dissertation investigates cTNRs within candidate genes to determine their prevalence and influence under selection in North American mammals. First, I evaluated the potential for somatic mosaicism in Canada lynx (Lynx canadensis), and found that tissue-specific mosaicism does not confound cTNR genotyping success in lynx. Second, I assessed a selection of clock gene cTNRs across characterized mammals and found that these repeats are abundant and highly variable in length and purity. I also identified preliminary signatures of selection in 3 clock gene cTNRs in 3 pairs of congeneric North American mammal species, highlighting the importance of cTNRs for understanding the evolution and adaptation of wild populations. I further evaluated the influence of selection on the NR1D1 cTNR within Canada lynx sampled across Canada using environmental correlation, where I estimated the variation in NR1D1 cTNR alleles explained by environmental and spatial variables after removing the effects of neutral population structure. Although most variation was explained by neutral structure, environment and spatial patterns in eastern lynx populations significantly explained some of the variation in NR1D1 alleles. To examine the role of island populations in the generation and distribution of adaptive genetic variation, I used 14 neutral microsatellites and a dinucleotide repeat within a gene linked to mammalian body size, IGF-1, and found that both genetic drift and natural selection influence the observed genetic diversity of insular lynx. Finally, I estimated the divergence dates of peripheral lynx populations and made recommendations towards the conservation of Canada lynx; high levels of genetic differentiation coupled with post-glacial colonization histories and patterns of divergence at cTNR loci suggest at least 4 ESUs for Canada lynx across their range. Author Keywords: adaptation, Canada lynx, candidate genes, coding trinucleotide repeats, evolution, natural selection
Assessing Canada Lynx Dispersal Across an Elevation Barrier
Mountain ranges are often thought to restrict movement of wildlife, yet previous studies evaluating the role of the Rocky Mountains as a dispersal barrier for Canada lynx (Lynx canadensis) have been contradictory. Our study uses neutral microsatellite loci to evaluate the role of the Rocky Mountains as a barrier to gene flow for lynx. Although lynx exhibited low genetic differentiation, we detected a limited effect of the mountains. Furthermore, we inferred the role played by landscape variables in gene flow (genetic differentiation predicted by landscape resistance). Limited gene flow most strongly related to resistance from physical factors (low snow cover and elevation), rather than other topographic and ecological factors (high terrain roughness, low forest cover, low habitat suitability, and geographic distance). Structural connectivity was a relatively poor predictor of functional connectivity. Overall, the Rockies represent an area of reasonably high functional connectivity for lynx, with limited resistance to gene flow. Author Keywords: Canada lynx, connectivity, gene flow, genetic structure, landscape genetics, Rocky mountains

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Master of Education
  • (-) ≠ Nocera
  • (-) = Environmental and Life Sciences
  • (-) = Wildlife conservation

Filter Results

Date

2011 - 2021
(decades)
Specify date range: Show
Format: 2021/03/04

Subject (Topic)