Graduate Theses & Dissertations

Assessing basin storage
Water storage is a fundamental component of drainage basins, controlling the synchronization between precipitation input and streamflow output. The ability of a drainage basin to store water and regulate streamflow may mediate sensitivity to climate and land cover change. There is currently no agreement on the best way to quantify basin storage. This study compares results of a combined hydrometric and isotopic approach for characterizing inter-basin differences in storage across the Oak Ridges Moraine (ORM) in southern Ontario. The ratio of the standard deviation of the stable isotope signature of streamflow relative to that of precipitation has been shown to be inversely proportional to mean water transit times, with smaller ratios indicating longer water transit times and implying greater storage. Stable isotope standard deviation ratios were inversely related to baseflow index values. Basins demonstrating longer transit times were associated with hydrological characteristics that promote infiltration and recharge of storage. Author Keywords: baseflow, basin storage, climate change, mean transit time, Oak Ridges Moraine, stable isotopes
Modelling Monthly Water Balance
Water balance models calculate water storage and movement within drainage basins, a primary concern for many hydrologists. A Thornthwaite water balance model (H2OBAAS) has shown poor accuracy in predicting low flows in the Petawawa River basin in Ontario, so lake storage and winter snow processes were investigated to improve the accuracy of the model. Lake storage coefficients, represented by the slopes of lake stage vs. lake runoff relationships, were estimated for 19 lakes in the Petawawa River basin and compared on a seasonal and inter-lake basis to determine the factors controlling lake runoff behaviour. Storage coefficients varied between seasons, with spring having the highest coefficients, summer and fall having equal magnitude, and winter having the lowest coefficients. Storage coefficients showed positive correlation with lake watershed area, and negative correlation with lake surface area during summer, fall, and winter. Lake storage was integrated into the H2OBAAS and improved model accuracy, especially in late summer, with large increases in LogNSE, a statistical measure sensitive to low flows. However, varying storage coefficients with respect to seasonal lake storage, watershed area, and surface area did not improve runoff predictions in the model. Modified precipitation partitioning and snowmelt methods using monthly minimum and maximum temperatures were incorporated into the H2OBAAS and compared to the original methods, which used only average temperatures. Methods using temperature extremes greatly improved simulations of winter runoff and snow water equivalent, with the precipitation partitioning threshold being the most important model parameter. This study provides methods for improving low flow accuracy in a monthly water balance model through the incorporation of simple snow processes and lake storages. Author Keywords: Lake Storage, Model Calibration, Monthly Water Balance, Petawawa River, Precipitation Partitioning, Snow Melt
Influence of Canopy Water Partitioning on the Isotopic Signature of Plant Water in a Mixed Northern Forest
This study seeks to clarify the way in which the differing canopy characteristics among tree species influence the partitioning of precipitation, and therefore the source of water available for plant water uptake, in the Plastic Lake catchment near Dorset, ON. Three dominant tree species were compared: red oak (Quercus rubra), eastern white pine (Pinus strobus), and eastern hemlock (Tsuga canadensis). Above-canopy precipitation, throughfall, stemflow, and soil water content were monitored weekly from June 2016 until October 2016 and the 18O and 2H isotopic signatures of each were analyzed. Plant water and bulk soil water samples were also collected from five trees of each species at five stages of the growing season to compare the isotopic signature of xylem water to that of their surrounding soils. Both plant water and bulk soil water displayed evidence of isotopic fractionation; however, plant water was more depleted in δ2H and δ18O than bulk soil water. Water interacting with the tree canopies as throughfall and stemflow did not display significant evidence of isotopic fractionation. This suggests that the vegetation could have accessed an isotopically distinct source of water stored within the soil or that an unknown isotopic fractionation process occurred throughout this study. Author Keywords:
significance of topographically-focused groundwater recharge during winter and spring on the Oak Ridges Moraine, southern Ontario
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous work has emphasized the importance of depression-focused recharge (DFR) for the timing and location of groundwater recharge to the ORM’s aquifers. However, the significance of DFR has not been empirically demonstrated and the relative control of land cover, topography, and surficial geology on DFR is unclear. The potential for DFR was examined for topographic depressions under forested and open, agricultural land covers with similar soils and surficial geology. Recharge (R) was estimated at the crest and base of each depression during the 2012-13 and 2013-14 winter-spring periods (~December – May) using both a 1-dimensional water balance approach and a surface-applied Br- tracer. At each depression, air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface-water levels were monitored and soil properties (texture, bulk density, porosity, and hydraulic conductivity) were measured. Both forested and agricultural land covers experienced soil freezing; however, concrete frost did not develop in the more porous and conductive forest soils. Concrete frost in agricultural depressions resulted in overland flow, episodic ponding and drainage of rain-on-snow and snowmelt inputs. Recharge was an order-of-magnitude greater at the base of open depressions. Observations of ponding (as evidence of DFR) were made at an additional 14 depressions with varying land cover, geometry, and soil type during the 2014 snowmelt period and measurements of pond depth, pond volume, land cover (i.e., percentage of agricultural vs. forested cover), depression geometry (i.e., contributing area, average slope, relief ratio) and soil texture were made. Ponding was restricted to depressions under mostly agricultural cover and a positive, non-linear relationship between pond volume and average slope was shown for sites with similar land cover and soil texture, but neither pond depth nor volume were related to any other depression characteristics. Results suggest that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention. Author Keywords: Concrete frost, Depression-focused groundwater recharge, Oak Ridges Moraine, Ponding, Topographic depressions, Water balance
Groundwater Recharge in a Managed Forest on the Oak Ridges Moraine, Southern Ontario
Groundwater recharge was estimated and compared in two open grasslands, three mixed deciduous forest stands (100+ years in age), three young red pine plantations (27 ¨C 29 years in age) and two old red pine plantations (62 ¨C 63 years in age) on the Oak Ridges Moraine, southern Ontario, Canada. Recharge was estimated using a 1-d water balance with measured precipitation, throughfall, stemflow, snowpack water equivalent and soil water storage, and modelled evapotranspiration. Throughfall distribution beneath red pine canopies showed no consistent variation with distance from the tree boles. Old red pines were not major stemflow producers and although the young red pines showed a slight tendency to focus stemflow (focussing ratio > 1), the inclusion of focussed stemflow when calculating recharge at the stand scale made little difference. Conversely, sugar maple (the predominant species in the mixed deciduous stands) showed a strong tendency to focus throughfall proximal to tree boles and produce large quantities of stemflow, resulting in relatively high soil moisture contents and enhanced opportunities for recharge within ~ 0.5 m of tree boles. Inclusion of these focussed inputs resulted in a ~ 11 ¨C 18 % increase in stand scale recharge estimates. The interpretation of land cover control on recharge was complicated by variations in soil texture between sites. Soil texture and its influence on soil water storage capacity resulted in temporal variations in recharge, with sites exhibiting large storage capacities producing less recharge in the fall and greater recharge in the spring than sites with limited storage capacities. Recharge estimates for the entire study period or seasonal values for sites grouped on the basis of soil water storage capacities showed a general trend of increasing recharge in the order: old red pine ¡Ö young red pine ¡ú mixed deciduous forest ¡Ö open grasslands. The disparity between the red pine plantations and the other sites was driven in large part by greater modelled evapotranspiration in the red pine plantations. The similarity in recharge between mixed deciduous forests and open grasslands was the result of focused inputs and less soil evaporation and transpiration in the mixed deciduous forests compared to the open grasslands. The results of this study suggest planting red pine on grasslands on the Oak Ridges Moraine will initially decrease recharge and this decrease will continue as the red pines mature. However, as the red pine plantations are succeeded by mixed hardwood stands recharge will recover to that of the initial grasslands. Author Keywords: Groundwater Recharge, Land Cover Type, Oak Ridges Moraine, Stemflow, Throughfall, Water Balance
Assessing the Potential for Contamination of Lakes from Upwelling of Arsenic-Laden Groundwater Through Sediments
A bedrock fracture hosting arsenic (As) contaminated groundwater was suspected to be transported to Ramsey Lake, a drinking water resource for more than 50,000 residents of Sudbury, Ontario. A high resolution, spatial, water quality mapping technique using an underwater towed vehicle (UTV) was used to identify sources of upwelling groundwater into lake water and localize the upwelling As contaminated groundwater vent site. The top 7 cm of lake sediments (in-situ) at this vent site were observed to adsorb 93 % of the dissolved As, thus inhibiting lake water quality degradation from this contaminant source. Sediment samples from this location were used in laboratory experiments to assess the potential for this system to become a source of As contamination to Ramsey Lake water quality and elucidate As(III) fractionation, transformation and redistribution rates and processes during aging. Arsenic speciation is important because As(III) has been shown to be more toxic than As(V). To accomplish this a sequential extraction procedure (SEP) that maintains As(III) and As(V) speciation in (sub)oxic sediments and soils was validated for the operationally defined fractions: easily exchangeable, strongly sorbed, amorphous Fe oxide bound, crystalline Fe oxide bound, and the residual fraction for total As because the characteristics of the reagents required to extract the final fraction do not maintain As species. Batch reaction experiments using sediment spiked with As(III) or As(V) and aged for up to 32 d were sequentially extracted and analysed for As(III) and As(V). Consecutive reaction models illustrate As(III) is first adsorbed to the sediment then oxidized to As(V). Fractionation analyses show As(III) most rapidly adsorbs to the easily exchangeable fraction where it is oxidized and redistributes to the strongly sorbed and amorphous Fe oxide bound fractions. Oxidation of As(III) adsorbed to the amorphous and crystalline Fe oxide bound fractions is less efficient and possibly inhibited. Select samples amended with goethite provide evidence supporting Mn(II) oxidation is catalyzed by the goethite surface, thus increasing As(III) oxidation by Mn(III/IV) complexed with the strongly sorbed fraction. Although As immobilization through groundwater sediment interactions may be inhibited by increased ion activity, particularly phosphate or lake eutrophication, this threat in Ramsey Lake is likely low. Author Keywords: arsenic, fractionation, modelling, redistribution, speciation, water quality mapping
Seasonal variation in nutrient and particulate inputs and outputs at an urban stormwater pond in Peterborough, Ontario
Stormwater ponds (SWPs) are a common feature in new urban developments where they are designed to minimize runoff peaks from impervious surfaces and retain particulate matter. As a consequence, SWPs can be efficient at retaining particle-bound nutrients, but may be less efficient at retaining nutrients that are present primarily in the dissolved form, like nitrogen (N). However, the forms of nutrients (e.g. particulate vs. dissolved) likely differ with hydrologic and seasonal conditions and few studies have examined year-round differences in nutrient forms and concentrations at urban SWPs. In order to contrast total suspended solids (TSS), phosphorus (P) and nitrogen (N) levels between low and high flow conditions, sampling was conducted at an urban SWP in Peterborough, ON between November 2012 and October 2013. Only an increase in TSS levels at the outflow between low and high flow conditions was observed, as well as a decrease in TSS levels at the outflow compared to Inflow 1 under low flow conditions. Nitrate-N (NO3-N) was the dominant form of N entering the pond under all flow conditions, whereas the fraction of total-P (TP) that was particulate increased under high flow conditions. Nevertheless, the dissolved fraction of TP was consistently high in these urban inlets. Only NO3-N was significantly greater in the inflows than outflow and only under low flow conditions. Increases in the proportions of organic-N and ammonium-N in the outlet suggest that biological processing is important for N retention. Author Keywords: nitrogen, Ontario, phosphorus, stormwater ponds, total suspended solids
Hydroclimatic and spatial controls on stream nutrient export from forested catchments
Winter nutrient export from forested catchments is extremely variable from year-to-year and across the landscape of south-central Ontario. Understanding the controls on this variability is critical, as what happens during the winter sets up the timing and nature of the spring snowmelt, the major period of export for water and nutrients from seasonally snow-covered forests. Furthermore, winter processes are especially vulnerable to changes in climate, particularly to shifts in precipitation from snow to rain as air temperatures rise. The objective of this thesis was to assess climatic and topographic controls on variability in stream nutrient export from a series of forested catchments in south-central Ontario. The impacts of climate on the timing and magnitude of winter stream nutrient export, with particular focus on the impact of winter rain-on-snow (ROS) events was investigated through a) analysis of long-term hydrological, chemical and meteorological records and b) high frequency chemical and isotopic measurements of stream and snow samples over two winters. The relationship between topography and variability in stream chemistry among catchments was investigated through a) a series of field and laboratory incubations to measure rates and discern controls on nitrogen mineralization and nitrification and b) analysis of high resolution spatial data to assess relationships between topographic metrics and seasonal stream chemistry. Warmer winters with more ROS events were shown to shift the bulk of nitrate (NO3-N) export earlier in the winter at the expense of spring export; this pattern was not observed in other nutrients [i.e. dissolved organic carbon (DOC), total phosphorus (TP), sulphate (SO4), calcium (Ca)]. Hydrograph separation revealed the majority of ROS flow came from baseflow, but the NO3-N concentrations in rainfall and melting snow were so high that the majority of NO3-N export was due to these two sources. Other nutrient concentrations did not show such a great separation between sources, and thus event export of these nutrients was not as great. Proportionally, catchments with varying topography responded similarly to ROS events, but the absolute magnitude of export varied substantially, due to differences in baseflow NO3-N concentrations. Field and laboratory incubations revealed differences in rates of net NO3-N production between wetland soils and upland soils, suggesting that topographic differences amongst catchments may be responsible for differences in baseflow NO3-N. Spatial analysis of digital elevation models revealed strong relationships between wetland coverage and DOC and dissolved organic nitrogen (DON) concentrations in all seasons, but relationships between topography and NO3-N were often improved by considering only the area within 50 or 100m of the stream channel. This suggests nutrient cycling processes occurring near the stream channel may exert a stronger control over NO3-N stream outflow chemistry. Overall, topography and climate exert strong controls over spatial and temporal variability in stream chemistry at forested catchments; it is important to consider the interaction of these two factors when predicting the effects of future changes in climate or deposition. Author Keywords: biogeochemistry, forest, nitrate, south-central Ontario, stream chemistry, winter

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Master of Education
  • (-) ≠ Nocera
  • (-) = Environmental and Life Sciences
  • (-) = Hydrologic sciences