Graduate Theses & Dissertations

Pages

Novel Silica Sol-Gel Passive Sampler for Mercury Monitoring in Aqueous Systems
A novel passive sampler for mercury monitoring was prepared using organosilica sol-gel materials. It comprises a binding layer with thiol groups for mercury complexation and a porous diffusive layer through which mercury can diffuse and arrive at the binding layer. Our study demonstrated that this new sampler follows the principle of passive sampling. The mass of mercury accumulated in the binding layer depends linearly on the mercury concentration in solution, the sampling rate and the exposure time. A typical sol-gel sampler is characterized by a diffusive layer of 1.2 &mum, in which mercury ions diffuse with a coefficient of D = 0.09~10-6 cm2/s. The capacity for mercury uptake is approximately 0.64 &mug/cm2. Mercury diffusion and binding in the passive sampler are independent of the type of mercury-chloride complex. Its sampling rate increases with increasing water turbulence and decreases with increasing DOM amount. The field trial of sol-gel sampler in Miller Creek shows the concentration gained from the sol-gel passive sampler is slightly lower than that from the spot sampling. Author Keywords:
Comparison of the Optical Properties of Stratiotes aloids and the Local Plant Community
As part of a mandate to control the spread of Stratiotes aloides (WS; water soldier) in the Trent Severn Waterway, the Ministry of Natural Resources (MNR) created a management plan to eradicate WS. However, one of the biggest challenges in eradicating WS or any invasive aquatic plant is the ability to estimate the extent of its spread and detect new populations. While current detection methods can provide acceptable detection, these methods often require extensive time and effort. The purpose of this thesis was to assess the use optical properties of WS and WS exudates for detection, in order to improve on current detection methods. The optical properties of WS were sampled at three different sites during three different seasons (spring, summer, and fall) by a) randomly sampling tissue from WS and the local plant community at each site, and recording the reflectance properties in a laboratory setting b) collecting dissolved organic matter (DOM) samples from plant incubations and river water in the field. Significant differences in the reflectance properties of WS were observed among samples from different sites and different sampling times; however, changes in fluorescence properties were only seasonal. Despite spatial differences in WS reflectance; WS was detectable using both hyperspectral and multispectral reflectance. When hyperspectral reflectance was used, significant differences between WS and the local plant community were found in June using two bands (i.e. bands 525 and 535, R 2 = 0.46 and 0.48, respectively). Whereas multispectral reflectance was significant different in October using the coastal and blue band. While WS produced a unique signal using both reflectance types, multispectral reflectance had a greater potential for detection. Its greater potential for detection was due to the reduced noise produced by background optical properties in October in comparison to June. DOM derived from WS was also characterized and compared with whole-river DOM samples in order to find unique markers for WS exudates in river samples. While similarities in DOM concentrations of WS exudates to Trent River water limited the ability to detect WS using compositional data, the ratio of C4/C5 components were compared in order to find components that were proportionally similar. Based on the results of this study multispectral and fluorescence techniques are better suited for the detection of a unique WS signature. The results derived from this work are intended to have practical applications in plant management and monitoring, DOM tracing, as well as remote sensing. Author Keywords: Dissolved organic matter, Hyperspectral reflectance, Invasive species management, Multispectral reflectance, PARAFAC, Stratiotes aloides
Proximal Soil Nutrient Sensing in Croplands through Multispectral Imaging from Unmanned Aerial Vehicles (UAV) for Precision Agriculture Applications
Currently, UAVs are deployed to measure crop health in a timely manner by mapping vegetation indices. A study using two different fields was conducted in order to search for a relationship that may exist between crop health and soil fertility. A UAV equipped with sensor technology was used for mapping of vegetation indices which were then statistically compared to soil nutrient data collected via soil sampling. Elevation data was also collected which was then statistically compared to soil nutrients as well as crop health. Results of this study were unfortunately impacted by variables outside of the researcher’s control. Moisture became the greatest limiting factor in 2016 followed by an excess of rain in 2017. Results did not show any promising correlations as moisture uncontrollably became the defining variable. Further research in a more controlled setting will need to be conducted in order to explore this potential relationship. Author Keywords: Agriculture, Multispectral Imagery, Precision Agriculture, Proximal Soil Sensing, Remote Sensing, Unmanned Aerial Vehicle
Bioremoval of copper and nickel on living and non-living Eugelna gracilis
This study assesses the ability of a unicellular protist, Euglena gracilis, to remove Cu and Ni from solution in mono- and bi-metallic systems. Living Euglena cells and non-living Euglena biomass were examined for their capacity to sorb metal ions. Adsorption isotherms were used in batch systems to describe the kinetic and equilibrium characteristics of metal removal. In living systems results indicate that the sorption reaction occurs quickly (<30 min) in both Cu (II) and Ni (II) mono-metallic systems and adsorption follows a pseudo-second order kinetics model for both metals. Sorption capacity and intensity was greater for Cu than Ni (p < 0.05) and were described by the Freundlich model. In bi-metallic systems sorption of both metals appears equivalent. In non-living systems sorption occurred quickly (10-30 min) and both Cu and Ni equilibrium uptake increased with a concurrent increase of initial metal concentrations. The pseudo-first-order model was applied to the kinetic data and the Langmuir and Freundlich models effectively described single-metal systems. The biosorption capacity of Cu (II) and) was 3x times greater than that of Ni (II). Sorption of one metal in the presence of relatively high concentrations of the other metal was supressed. Generally, it was found that living Euglena remove Cu and Ni more efficiently than non-living Euglena biomass in both mono- and bi-metallic systems. It is anticipated that this work should contribute to the identification of baseline uptake parameters and capacities for Cu and Ni by Euglena as well as to the increasing amount of research investigating sustainable bioremediation. Author Keywords: accumulation, biosorption, Cu, Euglena gracilis, kinetics, Ni
Risk of Mortality for the Semipalmated Plover (Charadrius semipalmatus) Throughout Its Life Cycle
Three long-term mark and recapture/resight data sets of individually marked Semipalmated Plovers (Charadrius semipalmatus) were analyzed using Cormack-Jolly- Seber models. Data came from two breeding populations (Churchill, Manitoba, Canada, n=982, and Egg Island, Alaska, USA, n=84) and one overwintering population (Cumberland Island, Georgia, USA, n=62). For Alaska and Georgia, time-invariant models were best-supported, giving annual survival estimates of 0.67 (95%C.I.: 0.58- 0.76) and 0.59 (95%C.I.: 0.49-0.67) respectively. Data from Manitoba supported a timedependent model: survival estimates varied from 1.00 to 0.36, with lowest estimates from recent years, supporting observations of local population decline. Seasonal survival analysis of the Georgia population indicated lower mortality during winter (monthly Φoverwinter: 0.959, 95%CI: 0.871-0.988; for 6 month period Φoverwinter: 0.780 (0.440-0.929)) than during combined breeding and migratory periods (monthly ΦBreeding+Migration: 0.879 (0.825-0.918); for 8 month ΦBreeding+Migration: 0356 (0.215-0.504)). I recommend, based on high resight rates, continued monitoring of survival of wintering populations, to determine potential range-wide population declines. Keywords: survival, longevity, mortality, shorebird, overwinter, breeding, migration, life cycle Author Keywords: life cycle, longevity, mortality, non-breeding, shorebird, survival
Influence of nitrogen deposition on the vegetation community of Irish oak woodlands
In this study, the influence of N deposition on the vegetation community of semi-natural oak woodlands in Ireland was assessed through national and regional scale analysis of forest plot data. At both scales, Canonical Correspondence Analysis suggested that N deposition was a predictor of community composition, although site-specific soil characteristics were the strongest predictors of the species dataset. Threshold Indicator Taxon Analysis suggested that the vegetation community demonstrated the most change at 13.2 kg N ha-1 yr-1. While this change point falls within the current recommended critical load range for nutrient nitrogen for acidophilous oak dominated woodlands (10 to 15 kg N ha-1 yr-1), it is notable that 23% of species recorded had individual change points below this range, and could potentially be lost from this habitat if deposition increases. The results from this study suggest that, for acidophilous oak woodlands, habitat conservation policies should be unified with N emission reduction policies. Author Keywords: community composition, critical load, nitrogen depositioin, oak woodland, species richness, Taxon Indicator Threshold Analysis
Assessing Brook Trout (Salvelinus fontinalis) Seasonal Occupancy in Haliburton County, ON Using Environmental DNA
Brook trout (Salvelinus fontinalis) are declining across Ontario in both numbers and distribution, prompting concern for their future. Here, conventional, emerging, and predictive tools were combined to document brook trout occupation across seasons using streams in Haliburton County, ON as model systems. By using the Ontario Ministry of Natural Resources and Forestry’s (OMNRFs) Aquatic Ecosystem Classification (AEC) system variables with environmental DNA (eDNA) sampling and backpack electrofishing, my research supports the development of species occupancy models (SOMs) and eDNA as tools to document brook trout occurrence. To do this, eDNA sampling was validated in Canadian Shield stream environments by comparison with single-pass backpack electrofishing before seasonally sampling two river systems across their main channel and tributaries to assess occupancy. Streams were classified as potential high, moderate, and low-quality brook trout habitats using indicator variables within the AEC and sampled seasonally with eDNA to quantify occupancy and relate it to habitat potential at the county scale. Results showed eDNA to be an effective tool for monitoring fish across Canadian Shield landscapes and that brook trout occupancy varied seasonally within and across watersheds, suggesting that habitat and fish management strategies need to consider seasonal movement and spatial connectivity. Using these tools will enable biologists to efficiently predict and document brook trout occurrences and habitat use across the landscape. Author Keywords: Aquatic Ecosystem Classification, brook trout, Canadian Shield, connectivity, environmental DNA, seasonal occupation
Equilibria and distribution models of ionizing organic chemical contaminants in environmental systems
Ionizing organic chemicals are recognized as constituting a large fraction of the organic chemicals of commerce. Many governments internationally are engaged in the time-consuming and expensive task of chemical risk assessment for the protection of human and environmental health. There are standard models that are consistently used to supplement experimental and monitoring data in such assessments of non-ionizing organics by both government regulators and industry stakeholders. No such standard models exist for ionizing organics. Equilibrium distribution models, the foundational equations within multimedia environmental fate models for non-ionizing organics, were developed for the standard series of biphasic systems: air-water, particle-water, air-particle and organic-aqueous phases within living tissue. Multiple chemical species due to the ionization reaction were considered for each system. It was confirmed that, under select conditions, the properties of the neutral parent are sufficient to predict the overall distribution of the organic chemical. Complications due to biotransformation and paucity of identifiable equilibrium distribution data for ionizing organics limited the development of the model for living tissues. However, the equilibrium distributions of ionizing organics within this biotic system were shown to correlate with the abiotic sediment-water system. This suggests that the model developed for particle-water systems should be adaptable to the biotic system as model input and test data become available. Observational data for soil- and sediment- water systems, i.e., particle-water systems, allowed the development of a primarily non-empirical distribution equation for mono-protic acids; this model was almost entirely theoretically derived. The theoretical approach to model development allowed a quantitative assessment of the role of the neutral ion pair, resulting from the complexation of the organic anion with metal cations. To demonstrate the model's potential usefulness in governmental screening risk assessments, it was applied to a broad range of mono-protic organics including drugs and pesticides using standard property estimation software and generic inputs. The order-of-magnitude agreement between prediction and observation typical of the existing models of non-ionizing organics was generally achieved for the chemicals tested. The model was sensitive to the octanol-water partition coefficient of the most populous species. No calibration set was used in the development of any of the models presented. Author Keywords: bioconcentration, chemical equilibrium, environmental modelling, ionizing organic, sorption
Automated Separation and Preconcentration of Ultra-Trace Levels of Radionuclides in Complex Matrices by Online Ion Exchange Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
Radionuclides occur in the environment both naturally and artificially. Along with weapons testing and nuclear reactor operations, activities such as mining, fuel fabrication and fuel reprocessing are also major contributors to nuclear waste in the environment. In terms of nuclear safety, the concentration of radionuclides in nuclear waste must be monitored and reported before storage and/or discharge. Similarly, radionuclide waste from mining activities also contains radionuclides that need to be monitored. In addition, a knowledge of ongoing radionuclide concentrations is often required under certain ‘special’ conditions, for example in the area surrounding nuclear and mining operations, or when nuclear and other accidents occur. Thus, there is a huge demand for new methods that are suitable for continuously monitoring and rapidly analyzing radionuclide levels, especially in emergency situations. In this study, new automated analytical methods were successfully developed to measure ultra trace levels of single or multiple radionuclides in various environmental samples with the goal of faster analysis times and less analyst involvement while achieving detection limits suitable for typical environmental concentrations. Author Keywords: automation, ICP-MS, ion exchange, radionuclide
Responses of Primary Producers and Grazers to Silver Nanoparticle Exposure
The increasing production and use of silver nanoparticles (AgNPs) raise concerns on environmental exposure and impact. A large scale in situ enclosure study was conducted at the Experimental Lakes Area to determine the effect of AgNPs on natural phytoplankton and zooplankton communities. This study investigated AgNPs of varying concentrations (4, 16 and 64 μg/L), dosing regimens (chronic vs. pulse), and capping agents (poly-vinyl pyrrolidone vs. citrate). Phytoplankton communities were influenced only by the natural limnological properties of the system signifying tolerance to AgNPs. Zooplankton community structure significantly changed with AgNP concentration and dosing regimen indicating AgNP sensitivity. A microcosm study investigating the effect of AgNPs and phosphorus-dosed periphyton before and after grazing by two benthic invertebrate species (snails and caddisfly larvae) showed reduced periphyton stoichiometry with AgNP exposure. Grazers foraged less on silver dosed periphyton indicating a preferential choice in food quality. Phosphorus reduced the detrimental effects of AgNPs across all conditions. These studies verify the need for in situ experimental designs to fully investigate the effects of AgNPs and their interaction with environmental factors, multiple species assemblages, and across trophic levels. Author Keywords: benthic invertebrate, Experimental Lakes Area, periphyton, phytoplankton, silver nanoparticles, zooplankton
Influence of Nitrogen Deposition on Community Composition in Pinus banksiana Forests Across Northwestern Canada
Anthropogenic atmospheric emissions and subsequent deposition of nitrogen (N) can affect N-sensitive habitats and lead to shifts in plant species community composition. This study assessed the effects of N deposition on plant community composition for Jack pine forests across northwestern Canada and across a smaller subset of sites surrounding the Athabasca Oil Sands Region (AOSR) using ‘gradient forest’ analysis. Predictor influence on community composition varied depending on the scale of the study and relatively distinct thresholds were identified for different plant groups. In the larger scale study, a total deposited nitrogen (TDN) threshold of 1.5 – 3 kg N ha-1yr-1 was well suited to protect predominantly lichen species, consistent with lichen-based critical loads from other studies. Across the smaller scale study, a TDN threshold of 5.6 kg N ha-1yr-1 was primarily associated with vascular species changepoints but did include some important N-indicator lichen and bryophyte species. Author Keywords: critical loads, gradientForest, Jack pine, Nitrogen deposition, species composition
impact of selection harvesting on soil properties and understory vegetation in canopy gaps and skid roads in central Ontario
Tree harvesting alters nutrient cycling and removes nutrients held in biomass, and as a result nutrient availability may be reduced, particularly in naturally oligotrophic ecosystems. Selection harvesting is a silvicultural technique limited to tolerant hardwood forests where individual or small groups of trees are removed creating a “gap” in the forest canopy. In order for harvesting machinery to gain access to these individual trees, trees are felled to create pathways, known as skid roads. The objective of this study was to characterize differences in soil chemical and physical properties in gaps, skid roads and uncut areas following selection harvesting in central Ontario as well as documenting differences in the understory vegetation community and sugar maple (Acer saccharum) seedlings chemical composition post harvest. First year seedlings were collected for elemental analysis from unharvested areas, canopy gaps, and skid roads in 2014, eight months after harvesting. In 2015, first and second year sugar maple seedlings were collected. Soil bulk density and water infiltration were measured in the three areas of the catchment as well as soil moisture, organic matter content, exchangeable base cations, and net nitrification. Seedlings in the disturbed sites had lower concentrations of Mg, K, P, and N compared with unharvested sites and soil nitrification was significantly lower in the skid roads. Water infiltration rates in the gap and skid roads were slower than the control and concentrations of metals (e.g. Fe, Al, Ca) and litter mass increased in litter bags deployed over 335 days, likely reflecting an increase in soil erosion in the skid roads. Understory vegetation was markedly different amongst sites, particularly the dominance of Carex spp. in the skid roads. The sustainability of industrial logging is dependent on successful tree regeneration, however, increased soil compaction, establishment and growth of grasses and shrubs, as well as low nutrient concentrations in seedlings may ultimately restrict forest succession. Author Keywords: Canadian Shield, nitrification, selection harvesting, soil compaction, sugar maple seedling, understory vegetation

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Southeast Asian studies
  • (-) ≠ Master of Arts
  • (-) = Environmental science

Filter Results

Date

2011 - 2031
(decades)
Specify date range: Show
Format: 2021/11/30