Graduate Theses & Dissertations

Pages

Effect of SP600125 JNK Inhibitor on Cadmium-Treated Mouse Embryo Forelimb Bud Cells In Vitro
This study investigated the role of the JNK signaling pathway in cadmium-treated mouse embryo forelimb bud cells in vitro. Primary cultures of forelimb bud cells harvested at day 11 of gestation were pre-treated with JNK inhibitor SP600125, and incubated with or without CdCl2 for 15, 30, 60, 120 minutes and 24, 48 hours or 5 days. Endpoints of toxicity were measured through cell differentiation by Alcian Blue Assay and phosphorylation of JNK proteins by Western blot. The results demonstrated that, in the cell differentiation assay, inhibiting JNK activation by 20 μM SP600125 causes an enhanced toxic effect in limb cells and inhibits cell differentiation, whereas 2 μM decreases differentiated nodule numbers under both cadmium stress and normal conditions. In conclusion, the JNK pathway has an essential role in the differentiation processes of limb bud cells in normal growth conditions. Author Keywords: Cadmium, Cell Signaling, JNK, Limbs, Mouse Embryo, Teratology
Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft, Ontario, Canada
ABSTRACT Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft Ontario, Canada. Michael R. Allan Parturition site selection by ungulates is believed to be influenced by forage abundance and concealment from predators. In 2011 and 2012, I used vaginal implant transmitters and movements to identify calving sites for 23 GPS collared elk (Cervus elaphus) from a restored herd. I tested the hypothesis that maternal elk used sites with higher forage and denser concealment compared to pre-calving sites at micro and macrohabitat levels. I detected no significant microhabitat differences from direct measurements of vegetation. At the macrohabitat scale, based on proximity of landcover classes, mean distances to hardwood forests was significantly less for calving (153 m) than pre-calving sites (198 m). Site fidelity is hypothesized to offer security in terms of familiarity to an area. I tested the hypothesis that females demonstrated fidelity to their previous year's location during pre-partum, parturition, post partum, breeding and winter periods. Elk were more philopatric during parturition and post partum than during breeding. Compared to winter elk were more philopatric during pre-partum, parturition and post-partum periods. Expressed as distance between consecutive-year calving locations, site fidelity varied with 27% of females exhibiting high (<1 km), 18% moderate and 55% (>2.9 km) low fidelity. I measured nearest-neighbour distances at calving time, exploring the hypothesis that females distance themselves from conspecifics. Elk increased the average distances to collared conspecifics during parturition; however, sample sizes were small. This strategy might influence calving site selection. Rapid movement prior to parturition, low site fidelity and spacing-out of females during parturition appear to be strategies to minimize predator risk and detection. Little evidence of selection for vegetation structure suggests this may not be limiting to these elk. Author Keywords: calving, elk, fidelity, movement, parturition, selection
Comparative Evaluation of Effective Population Size Genetic Estimation Methods in Wild Brook Trout (Salvelinus fontinalis) Populations
Effective population size (Ne) is a key concept in population genetics, evolutionary biology and conservation biology that describes an important facet of genetic diversity and the capacity of populations to respond to future evolutionary pressures. The importance of Ne in management and conservation of wild populations encouraged the development of numerous genetic estimators which rely on a variety of methods. Despite the number and diversity of available Ne methods, however, tests of estimator performance have largely relied on simulations, with relatively few tests based on empirical data. I used well-studied wild populations of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario as a model system to assess the comparative performance of multiple Ne estimation methods and programs, comparing the resultant Ne estimates against demographic population size estimates. As a first step, the genetic diversity and ancestry of wild brook trout populations was determined using 14 microsatellite loci. Genetic structure of brook trout populations showed variable contributions from historical supplemental stocking and also identified localized gene pools within and between watersheds, reflecting variable levels of connectivity and gene flow. Once the genetic ancestry and connectivity of populations had been resolved, single sample (point) and two samples (temporal) genetic estimators were used to estimate Ne of populations with pure native ancestry. Values obtained from genetic estimators utilizing both methods were variable within as well as among populations. Single sample (point) estimators were variable within individual populations, but substantially less than was observed among the temporal methods. The ratios of Ne to the estimated demographic population size (N) in small populations were substantially higher than in larger populations. Variation among estimates obtained from the different methods reflects varying assumptions that underlay the estimation algorithms. This research further investigated the effect of sampling effort and number of microsatellite loci used on Ne values obtained using the linkage disequilibrium (LD) estimation method. Ne estimates varied substantially among values generated from subsets of loci and genotyped individuals, highlighting the necessity for proper sampling design for efforts aiming to measure Ne. Despite the variation observed among and within estimation methods, the Ne concept is a valuable for the conservation and management of both exploited and endangered species. Author Keywords: Brook Trout, Effective population size, Genetic Diversity, Genetic Structure
Phosphorus forms and response to changes in pH in acid-sensitive soils on the Precambrian Shield
Catchment soil acidification has been suggested as a possible mechanism for reducing phosphorus (P) loading to surface waters in North America and northern Europe, but much of the research that has been conducted regarding P immobilization in pH manipulated soils has been performed at high P concentrations (> 130 μM). This study investigated how soil acidity was related to P fractionation and P sorption at environmentally relevant P concentrations to evaluate the potential influence of long term changes in soil pH on P release to surface waters. Total phosphorus (TP) concentrations declined between 1980 and 2000 in many lakes and streams in central Ontario; over the same time period forest soils in this region became more acidic. Soils were collected from 18 soil pits at three forested catchments with similar bedrock geology but varying TP export loads. The soil pH at the 18 study soil pits spanned the historic soil pH range, allowing for `space for time' comparison of soil P factions. Soils were analysed by horizon for P fractions via Hedley P fractionation. Batch P sorption experiments were performed on selected B-horizon soils at varied solution pH. Soil P fractions varied by horizon but were comparable among the three catchments, with only apatite (PHCl) differing significantly across catchments. Contrary to expectation, both soluble and labile P showed negative relationships with pH in some horizons. Mineral soils were able to sorb almost all (> 90 %) of the P in solution at environmentally relevant P concentrations (4.5 - 45.2 μM). Phosphorus sorption at environmentally relevant P concentrations was unrelated to solution pH but at high P concentration there was a positive relationship between P sorption and solution pH, suggesting a P concentration dependant P sorption mechanism. Phosphorus budgets indicate that P is accumulating within catchments, suggesting that P is being immobilized in the terrestrial environment. An alternative hypothesis, which attempts to explain both the decline in stream TP export and terrestrial P accumulation, is discussed. The results from this study suggest that acidification induced P sorption in upland soils are not a contributing factor to decreases in stream TP concentration in the study catchments. Author Keywords: central Ontario, Hedley fractionation, phosphorus, podzols, soil acidification, sorption
effects of environmental variables and dissolved organic matter characteristics on the diffusion coefficient of dissolved organic matter using diffusive gradients in thin films
The efficacy of the diffusive gradients in thin films (DGT) passive samplers to provide accurate measurements of free metal ions and those complexed with dissolved organic matter (DOM) was investigated. DOM controls the diffusive properties of DOM-complexed metal species in natural systems. Knowing the diffusion coeiffiecent (D) for DOM of different molecular weights (MW) and the major environmental variables influencing D is critical in developing the use of DGT passive samplers and understanding labile species. D and MW were determined for natural and standard DOM. No noticeable changes in DOM MW were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. Data analysis revealed that MW had the greatest influence on D, with a negative relationship between D and MW, except in tidal areas where ionic strength influence on D was significant. This study provides further characterization of the variables influencing D using the DGT technique. Author Keywords: Diffusion coefficient, Diffusive gradients in thin films, Dissolved organic matter, Flow field-flow fractionation, Principal Component Analysis, UV-Vis Spectroscopy
Variation in the δ15N and δ13C composition of POM in the Lake Simcoe watershed
The purpose of this study was to quantify the variation of baseline carbon and nitrogen stable isotope signatures in the Lake Simcoe watershed and relate that variation to various physicochemical parameters. Particulate organic matter samples from 2009 and 2011 were used as representatives of baseline isotopic values. Temporal data from two offshore lake stations revealed that δ15N of POM was lowest mid-summer and highest after the fall turnover. POM δ13C was variable throughout the summer before declining after fall turnover. Spatial data from the lake and the tributaries revealed that POM stable isotope signatures were highly variable. Various physicochemical parameters indicative of phytoplankton biomass were significantly positively correlated with POM δ15N and significantly negatively correlated with POM δ13C. The correlations were mostly significant in the tributaries, not the lake. Moreover, many of the correlations involving δ15N of POM were driven by extreme values in Cook's Bay and its tributaries. In general, it's likely that different processes or combination of processes were affecting the δ15N and δ13C POM in the Lake Simcoe watershed as physicochemical parameters alone could not explain the variability. Measuring the δ15N of ammonium and nitrate, as well as the δ13C of DIC would help discern the dominant nitrogen and inorganic carbon cycling processes occurring in the Lake Simcoe watershed. Author Keywords: δ13C, δ15N, isotopic baseline, particulate organic matter, spatial variation, stable isotopes
Factors Controlling Peat Chemistry and Vegetation Composition in Sudbury Peatlands after 30 Years of Emission Reductions
Peatlands are prevalent in the Sudbury, Ontario region. Compared with the well documented devastation to the terrestrial and aquatic ecosystems in this region, relatively little work has been conducted on the peatlands. The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands in Sudbury after over 30 years of emission reductions. Peatland chemistry and the degree of humification varies considerably, but sites closer to the main smelter had more humified peat and the surface horizons were enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with Cu and Ni in the plant tissue of leatherleaf, although the increased foliar metal content did not obviously impact secondary chemistry stress indicators. The pH and mineral content of peat were the strongest determining factors for species richness, diversity and community composition. The bryophyte communities appear to be acid and metal tolerant, although Sphagnum mosses are showing limited recovery. Author Keywords: anthropogenic emissions, bryophytes, community comspoition, heavy metals, peatlands, wetland vegetation
Demography and habitat selection of Newfoundland caribou
The objective of this thesis is to better understand the demography and habitat selection of Newfoundland caribou. Chapter 1 provides a general introduction of elements of population ecology and behavioural ecology discussed in the thesis. In Chapter 2, I examine the causes of long-term fluctuations among caribou herds. My findings indicate that winter severity and density-dependent degradation of summer range quality offer partial explanations for the observed patterns of population change. In Chapter 3, I investigate the influence of climate, predation and density-dependence on cause-specific neonate survival. I found that when caribou populations are in a period of increase, predation from coyotes and bears is most strongly influenced by the abiotic conditions that precede calving. However, when populations begin to decline, weather conditions during calving also influenced survival. I build on this analysis in Chapter 4 by determining the influence of climate change on the interplay between predation risk and neonate survival. I found that the relative equilibrium between bears and coyotes may not persist in the future as risk from coyotes could increase due to climate change. In Chapter 5, I investigate the relationships in niche overlap between caribou and their predators and how this may influence differential predation risk by affecting encounter rates. For coyotes, seasonal changes in niche overlap mirrored variation in caribou calf risk, but had less association with the rate of encounter with calves. In contrast, changes in niche overlap during the calving season for black bears had little association with these parameters. In Chapter 6, I examine broad-level habitat selection of caribou to study trade-offs between predator avoidance and foraging during the calving season. The results suggest that caribou movements are oriented towards increased access to foraging and the reduction of encounter risk with bears, and to a lesser extent, coyotes. Finally, I synthesize the major findings from this thesis and their relevance to caribou conservation in Chapter 7, to infer that Newfoundland caribou decline is ultimately driven by extrinsic and intrinsic elements related to density-dependence. Reduction in neonate survival emerged from nutritionally-stressed caribou females producing calves with lower survival. Author Keywords: Behavioural ecology, Black bear (Ursus americanus), Coyote (Canis latrans), Population ecology, Predator-prey interactions, Woodland caribou (Rangifer tarandus)
Investigating the sources and fate of monomethylmercury and dimethylmercury in the Arctic marine boundary layer and waters
Monomethylmercury (MMHg), the most bioavailable form of mercury (Hg) and a potent neurotoxin, is present at elevated concentrations in Arctic marine mammals posing serious health threats to the local populations relying on marine food for their subsistence living. The sources of MMHg in the Arctic Ocean surface water and the role of dimethylmercury (DMHg) as a source of MMHg remain unclear. The objective of this research was to determine the sources and fate of methylated Hg species (MMHg and DMHg) in the marine ecosystem by investigating processes controlling the presence of methylated Hg species in the Arctic Ocean marine boundary layer (MBL) and surface waters. A method based on solid phase adsorption on Bond Elut ENV was developed and successfully used for unprecedented measurement of methylated Hg species in the MBL in Hudson Bay (HB) and the Canadian Arctic Archipelago (CAA). MMHg and DMHg concentrations averaged 2.9 ± 3.6 (mean ± SD) and 3.8 ± 3.1 pg m-3, respectively, and varied significantly among sampling sites. MMHg in the MBL is suspected to be the product of marine DMHg degradation in the atmosphere. MMHg summer (June to September) atmospheric wet deposition rates were estimated to be 188 ± 117.5 ng m-2 and 37 ± 21.7 ng m-2 for HB and CAA, respectively, sustaining MMHg concentrations available for bio-magnification in the pelagic food web. The production and loss of methylated Hg species in surface waters was assessed using enriched stable isotope tracers. MMHg production in surface water was observed from methylation of inorganic Hg (Hg(II)) and, for the first time, from DMHg demethylation with experimentally derived rate constants of 0.92 ± 0.82 x 10-3 d-1 and 0.04 ± 0.02 d-1 respectively. DMHg demethyation rate constant (0.98 ± 0.51 d-1) was higher than that of MMHg (0.35 ± 0.25 d-1). Furthermore, relationships with environmental parameters suggest that methylated Hg species transformations in surface water are mainly biologically driven. We propose that in addition to Hg(II) methylation, the main processes controlling MMHg production in the Arctic Ocean surface waters are DMHg demethylation and deposition of atmospheric MMHg. These results are valuable for a better understanding of the cycle of methylated Hg in the Arctic marine environment. Author Keywords: Arctic Ocean, Atmosphere, Demethylation, Dimethylmercury, Methylation, Monomethylmercury
Aeolian Impact Ripples in Sand Beds of Varied Texture
A wind tunnel study was conducted to investigate aeolian impact ripples in sand beds of varied texture from coarsely skewed to bimodal. Experimental data is lacking for aeolian megaripples, particularly in considering the influence of wind speed on ripple morphometrics. Additionally, the modelling community requires experimental data for model validation and calibration. Eighteen combinations of wind speed and proportion of coarse mode particles by mass were analysed for both morphometrics and optical indices of spatial segregation. Wind tunnel conditions emulated those found at aeolian megaripple field sites, specifically a unimodal wind regime and particle transport mode segregation. Remote sensing style image classification was applied to investigate the spatial segregation of the two differently coloured size populations. Ripple morphometrics show strong dependency on wind speed. Conversely, morphometric indices are inversely correlated to the proportion of the distribution that was comprised of coarse mode particles. Spatial segregation is highly correlated to wind speed in a positive manner and negatively correlated to the proportion of the distribution that was comprised of coarse mode particles. Results reveal that the degree of spatial segregation within an impact ripple bedform can be higher than previously reported in the literature. Author Keywords: Aeolian, Impact Ripples, Megaripple, Self-organization, Wind Tunnel
Hybridization Dynamics between Wolves and Coyotes in Central Ontario
Eastern wolves (Canis lycaon) have hybridized extensively with coyotes (C. latrans) and gray wolves (C. lupus) and are listed as a `species of special concern' in Canada. Previous studies have not linked genetic analysis with field data to investigate the mechanisms underlying Canis hybridization. Accordingly, I studied genetics, morphology, mortality, and behavior of wolves, coyotes, and hybrids in and adjacent to Algonquin Provincial Park (APP), Ontario. I documented 3 genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves, and coyotes. I also documented a substantial number of hybrids (36%) that exhibited intermediate morphology relative to parental types. I found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Next, I studied intrinsic and extrinsic factors influencing survival and cause-specific mortality of canids in the hybrid zone. I found that survival was poor and harvest mortality was high for eastern wolves in areas adjacent to APP compared with other sympatric Canis types outside of APP and eastern wolves within APP. Contrary to previous studies of wolves and coyotes elsewhere, I hypothesized that all Canis types exhibit a high degree of spatial segregation in the Ontario hybrid zone. My hypothesis was supported as home range overlap and shared space use between neighboring Canis packs of all ancestry classes were low. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs and exacerbate hybridization. Canids outside APP modified their use of roads between night and day strongly at high road densities (selecting roads more at night), whereas they responded weakly at lower road densities (generally no selection). Individuals that survived exhibited a highly significant relationship between the difference in their night and day selection of roads and availability of roads, whereas those that died showed a weaker, non-significant response. My results suggest that canids in the unprotected landscape outside APP must balance trade-offs between exploiting benefits associated with secondary roads while mitigating risk of human-caused mortality. Overall, my results suggest that the distinct eastern wolf population of APP is unlikely to expand numerically and/or geographically under current environmental conditions and management regulations. If expansion of the APP eastern wolf population (numerically and in terms of its geographic distribution) is a conservation priority for Canada and Ontario, additional harvest protection in areas outside of APP may be required. If additional harvest protection is enacted, a detailed study within the new areas of protection would be important to document specific effects on eastern wolf population growth. Author Keywords: Canis, coyotes, eastern wolves, hybridization, resource selection, survival
Effects of Silver Nanoparticles on Lake Bacterioplankton
Silver nanoparticles (AgNP) released into aquatic environments could threaten natural bacterial communities and ecosystem services they provide. We examined natural lake bacterioplankton communities' responses to different exposures (pulse vs chronic) and types (citrate and PVP) of AgNPs at realistic environmental conditions using a mesocosm study at the Experimental Lakes Area. An in situ bioassay examined interactions between AgNPs and phosphorus loading. Bacterial communities exposed to high AgNP concentrations regardless of exposure or capping agent type accumulated silver. We observed increases in community production during additions of polyvinylpyrrolidone (PVP) -capped AgNPs and that site and nutrient-specific conditions are important to AgNPs toxicology in aquatic systems. Toxicological effects of AgNP are attenuated in natural conditions and differ from results from laboratory studies of AgNP toxicity. Our results demonstrate more studies are needed to fully assess the risk posed by these novel chemicals to the environment. This work could be useful in forming risk assessment policies which are largely based on lab studies and typically demonstrate strong toxic effects. Author Keywords: bacterial production, bacterioplankton communities, ecological stoichiometry, Experimental Lakes Area, mesocosms, silver nanoparticles

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ History
  • (-) = Environmental and Life Sciences
  • (-) ≠ Burness

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/12/08

Author Last Name

Show more

Last Name (Other)

Show more