Graduate Theses & Dissertations

Legacy Effects Associated with the World’s Largest Ongoing Liming and Forest Regeneration Program in Sudbury, Ontario, Canada
Soil and tree chemistry were measured across 15 limed sites that were established 14 to 37 years ago within the Sudbury barrens in Ontario, along with two unlimed pre-treatment condition reference sites and an unlimed remnant pine forest. Soil pH and base cation (calcium (Ca), magnesium (Mg), and potassium (K)) concentrations were elevated in surface organic [FH] horizons up to 37-years post limestone treatment. Limestone in the organic horizon was evident by higher Ca/Sr ratios (a good marker of dolomite) in younger sites. Base cation mass budgets were generally unable to account for the mass of added Ca and Mg. Sudbury is characterized by widespread metal contamination. Metal (copper (Cu), nickel (Ni), and lead (Pb)) concentrations were generally greatest within the FH horizon and unrelated to stand age. Copper and Ni concentrations in soil generally decreased with distance from the nearest smelter. Metal partitioning (Kd) in soil was most influenced by soil pH rather than organic matter suggesting that as liming effects fade over time metal availability may increase. Author Keywords: Afforestation, Degraded, Limestone, nutrient, Space-for-time, Sudbury
Effects of wood ash addition on soil chemical properties and sugar maple (Acer saccharum, Marsh.) seedling growth in two northern hardwood forest sites in central Ontario
One possible solution to acidification and losses of base cations in central Ontario forest soils may be the application of wood ash. Wood ash is generally high in pH and contains large amounts of calcium (Ca) and other nutrients essential for ecosystem health, however it also contains trace metals. Understanding the chemistry of soils following ash application to forests is crucial for future policy recommendations and remediation efforts. In this study, soil and soil water chemistry was measured at two acidic forest sites in central Ontario. Sugar maple (Acer saccharum, Marsh.) seedling growth and chemistry, as well as understory vegetation composition, were also measured. At site one, plots (2 m x 2 m) were established with sugar maple, white pine (Pinus strobus L.) and yellow birch (Betula alleghaniensis Britt.) residential wood ash treatments and applied at rates of 0 and 6 Mg ha-1. The effects of residential wood ash on soil and understory vegetation were measured three- and 12-months following ash addition. At site two, plots (5 m x 5 m) were established with both fly and bottom industrial grade bark ash treatments of 0, 4 and 8 Mg ha-1 (n=4), and tension lysimeters were positioned in each plot at 30, 50, and 100 cm depths. The effects of industrial grade wood ash on soil, soil water and understory vegetation were measured four years following ash addition. Metal concentrations in the ashes were generally low but were higher in the fly ash and yellow birch ash types. At site one, significant increase in soil pH, and Ca and magnesium (Mg) concentrations were observed after three months, however changes varied by treatment. Some metal concentrations increased in the upper organic horizons, but metals were likely immobilized in the soil due to increases in soil pH, electrical conductivity (EC) and high organic matter content of the soil. After one year, changes to metal concentrations in soils could be seen in mineral horizons, and a few metals (aluminum (Al), zinc (Zn), copper (Cu), chromium (Cr), strontium (Sr)) increased in treatment plots. At site two, the effects of industrial-grade bark ashes on soil pH could still be seen after four years and soil water metal concentrations were not elevated relative to controls. Changes to understory vegetation composition following ash application were observed, but ash addition had no significant effect on sugar maple seedling growth (root:shoot ratio) and did not lead to significant increases in foliar metal concentrations. There were significant differences in root chemistry, suggesting metal translocation and uptake could be restricted. Mass balance estimates indicate that the organic horizon is a sink for all metals and simulated drought in this horizon led to a decrease in soil pH and increase in soil water metal concentration, but this occurred in all treatments including control. These results suggest that application of industrial and residential wood ash in moderate doses with trace metal concentrations below or near regulatory limits will increase soil pH and base cation concentrations, as well as increase seedling tissue nutrient concentrations in northern hardwood forest soils. However, depending on the parent material of the ash, increased metal availability can also occur. Author Keywords: Acer saccharum, calcium decline, forest soil amendment, Haliburton Forest and Wildlife Reserve, heavy metal, wood ash
Soil Geochemistry and Normative Mineralogy across Canada
Soils play a crucial role in ecosystem functioning, for example, soil minerals provide important provisioning and regulate ecosystem services. This study used major soil oxides from the North American Soil Geochemical Landscapes Project (n=560) to assess elemental associations and infer soil minerals through exploratory data analysis and to determined quantitative soil mineralogy using a normative method, Analysis to Mineralogy (n=1170). Results showed elemental variability of oxides across the provinces of Canada and strong correlations occurred between elements indicative of soil mineral composition (e.g., Silicon and Aluminium). Principal component analysis inferred soil minerals from soil oxides trends on biplots and classified minerals, generally, as carbonates, silicates, and weathered secondary oxides. Spatial variability in minerals (quartz, plagioclase, potassium feldspar, chlorite, and muscovite) was related to the underlying bedrock geology. The use of Analysis to Mineralogy led to a reliable method of quantifying soil minerals at a large scale. Author Keywords: Analysis to Mineralogy, Exploratory data analysis, Normative procedures, North American Soil Geochemical Landscapes Project, Soil geochemistry, Soil mineralogy
Impact of Invasive Earthworms on Soil Respiration and Soil Carbon within Temperate Hardwood Forests
Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global carbon cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C the forest floor, mineral soil, fine root biomass, litterfall and litter decomposition rates and total soil respiration (TSR) over a full year were measured at two invaded and one uninvaded deciduous forest sites in southern Ontario. The uninvaded site was approximately 300m from one of the invaded sites and a distinct invasion front between the sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, litter decomposition and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in soil C pools between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass. Author Keywords: Biological Invasions, Carbon, Earthworms, Forest Ecosystems, Forest Floor, Soil Respiration
Effects of road salt sodium on soil
While previous studies have focused on how road salt affects water quality and vegetation, limited research has characterized road salt distribution through soil and the resulting impacts. The potential for sodium (Na+) to be retained and impact soil physical and chemical properties is likely to vary depending on the soil’s parent material, and more specifically on the extent of base saturation on the cation exchange complex. This thesis contrasted Na+ retention, impacts, and mobility in roadside soils in two different parent materials within southern Ontario. Soils were sampled (pits and deep cores) during fall 2013 and spring 2014 from two sites along highways within base-poor, Precambrian Shield soil and base-rich soil, respectively. Batch experiments were subsequently performed to investigate the influence of parent material and the effect of co-applied Ca2+-enriched grit on the longevity of Na+ retention in soils. Less Na+ is adsorbed upon the co-application of Ca2+, suggesting grit has a protective effect on soil by increasing cation exchange competition. Positive correlations between Na+ and pH, and negative correlations between Na+ and soil organic matter, % clay and base cations within Shield soils suggest that they are more vulnerable to Na+ impacts than calcareous soils due to less cation exchange competition. However, Na+ is more readily released from calcareous roadside soils, suggesting there is greater potential for Na+ transfer to waterways in regions dominated by calcareous soils. Author Keywords: cation exchange, parent material, road salt, sodium retention, urban soil

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Environmental science
  • (-) = Soil sciences

Filter Results

Date

2014 - 2024
(decades)
Specify date range: Show
Format: 2024/04/23

Degree

Degree Discipline

Subject (Topic)