Graduate Theses & Dissertations

Time Series Algorithms in Machine Learning - A Graph Approach to Multivariate Forecasting
Forecasting future values of time series has long been a field with many and varied applications, from climate and weather forecasting to stock prediction and economic planning to the control of industrial processes. Many of these problems involve not only a single time series but many simultaneous series which may influence each other. This thesis provides methods based on machine learning of handling such problems. We first consider single time series with both single and multiple features. We review the algorithms and unique challenges involved in applying machine learning to time series. Many machine learning algorithms when used for regression are designed to produce a single output value for each timestamp of interest with no measure of confidence; however, evaluating the uncertainty of the predictions is an important component for practical forecasting. We therefore discuss methods of constructing uncertainty estimates in the form of prediction intervals for each prediction. Stability over long time horizons is also a concern for these algorithms as recursion is a common method used to generate predictions over long time intervals. To address this, we present methods of maintaining stability in the forecast even over large time horizons. These methods are applied to an electricity forecasting problem where we demonstrate the effectiveness for support vector machines, neural networks and gradient boosted trees. We next consider spatiotemporal problems, which consist of multiple interlinked time series, each of which may contain multiple features. We represent these problems using graphs, allowing us to learn relationships using graph neural networks. Existing methods of doing this generally make use of separate time and spatial (graph) layers, or simply replace operations in temporal layers with graph operations. We show that these approaches have difficulty learning relationships that contain time lags of several time steps. To address this, we propose a new layer inspired by the long-short term memory (LSTM) recurrent neural network which adds a distinct memory state dedicated to learning graph relationships while keeping the original memory state. This allows the model to consider temporally distant events at other nodes without affecting its ability to model long-term relationships at a single node. We show that this model is capable of learning the long-term patterns that existing models struggle with. We then apply this model to a number of real-world bike-share and traffic datasets where we observe improved performance when compared to other models with similar numbers of parameters. Author Keywords: forecasting, graph neural network, LSTM, machine learning, neural network, time series
Educational Data Mining and Modelling on Trent University Students’ Academic Performance
Higher education is important. It enhances both individual and social welfare by improving productivity, life satisfaction, and health outcomes, and by reducing rates of crime. Universities play a critical role in providing that education. Because academic institutions face resource constraints, it is thus important that they deploy resources in support of student success in the most efficient ways possible. To inform that efficient deployment, this research analyzes institutional data reflecting undergraduate student performance to identify predictors of student success measured by GPA, rates of credit accumulation, and graduation rates. Using methods of cluster analysis and machine learning, the analysis yields predictions for the probabilities of individual success. Author Keywords: Educational data mining, Students’ academic performance modelling
SPAF-network with Saturating Pretraining Neurons
In this work, various aspects of neural networks, pre-trained with denoising autoencoders (DAE) are explored. To saturate neurons more quickly for feature learning in DAE, an activation function that offers higher gradients is introduced. Moreover, the introduction of sparsity functions applied to the hidden layer representations is studied. More importantly, a technique that swaps the activation functions of fully trained DAE to logistic functions is studied, networks trained using this technique are reffered to as SPAF-networks. For evaluation, the popular MNIST dataset as well as all \(3\) sub-datasets of the Chars74k dataset are used for classification purposes. The SPAF-network is also analyzed for the features it learns with a logistic, ReLU and a custom activation function. Lastly future roadmap is proposed for enhancements to the SPAF-network. Author Keywords: Artificial Neural Network, AutoEncoder, Machine Learning, Neural Networks, SPAF network, Unsupervised Learning
Self-Organizing Maps and Galaxy Evolution
Artificial Neural Networks (ANN) have been applied to many areas of research. These techniques use a series of object attributes and can be trained to recognize different classes of objects. The Self-Organizing Map (SOM) is an unsupervised machine learning technique which has been shown to be successful in the mapping of high-dimensional data into a 2D representation referred to as a map. These maps are easier to interpret and aid in the classification of data. In this work, the existing algorithms for the SOM have been extended to generate 3D maps. The higher dimensionality of the map provides for more information to be made available to the interpretation of classifications. The effectiveness of the implementation was verified using three separate standard datasets. Results from these investigations supported the expectation that a 3D SOM would result in a more effective classifier. The 3D SOM algorithm was then applied to an analysis of galaxy morphology classifications. It is postulated that the morphology of a galaxy relates directly to how it will evolve over time. In this work, the Spectral Energy Distribution (SED) will be used as a source for galaxy attributes. The SED data was extracted from the NASA Extragalactic Database (NED). The data was grouped into sample sets of matching frequencies and the 3D SOM application was applied as a morphological classifier. It was shown that the SOMs created were effective as an unsupervised machine learning technique to classify galaxies based solely on their SED. Morphological predictions for a number of galaxies were shown to be in agreement with classifications obtained from new observations in NED. Author Keywords: Galaxy Morphology, Multi-wavelength, parallel, Self-Organizing Maps

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Furgal
  • (-) = Applied Modeling and Quantitative Methods
  • (-) = Computer science
  • (-) = Mathematics

Filter Results

Date

2011 - 2031
(decades)
Specify date range: Show
Format: 2021/10/27

Degree