Graduate Theses & Dissertations

Range-Based Component Models for Conditional Volatility and Dynamic Correlations
Volatility modelling is an important task in the financial markets. This paper first evaluates the range-based DCC-CARR model of Chou et al. (2009) in modelling larger systems of assets, vis-à-vis the traditional return-based DCC-GARCH. Extending Colacito, Engle and Ghysels (2011), range-based volatility specifications are then employed in the first-stage of DCC-MIDAS conditional covariance estimation, including the CARR model of Chou et al. (2005). A range-based analog to the GARCH-MIDAS model of Engle, Ghysels and Sohn (2013) is also proposed and tested - which decomposes volatility into short- and long-run components and corrects for microstructure biases inherent to high-frequency price-range data. Estimator forecasts are evaluated and compared in a minimum-variance portfolio allocation experiment following the methodology of Engle and Colacito (2006). Some consistent inferences are drawn from the results, supporting the models proposed here as empirically relevant alternatives. Range-based DCC-MIDAS estimates produce efficiency gains over DCC-CARR which increase with portfolio size. Author Keywords: asset allocation, DCC MIDAS, dynamic correlations, forecasting, portfolio risk management, volatility
Disability-Mitigating Effects of Education on Post-Injury Employment Dynamics
Using data drawn from the Workplace Safety and Insurance Board’s (WSIB) Survey of Workers with Permanent Impairments, this thesis explores if and how the human capital associated with education mitigates the realized work-disabling effects of permanent physical injury. Using Cater’s (2000) model of post-injury adaptive behaviour and employment dynamics as the structural, theoretical, and interpretative framework, this thesis jointly studies, by injury type, the effects of education on both the post-injury probability of transitioning from non-employment into employment and the post-injury probability of remaining in employment once employed. The results generally show that, for a given injury type, other things being equal, higher levels of education are associated with higher probabilities of both obtaining and sustaining employment. Author Keywords: permanent impairment, permanent injury, post-injury employment
Long-term Financial Sustainability of China's Urban Basic Pension System
Population aging has become a worldwide concern since the nineteenth century. The decrease in birth rate and the increase in life expectancy will make China’s population age rapidly. If the growth rate of the number of workers is less than that of the number of retirees, in the long run, there will be fewer workers per retiree. This will apply great pressure to China’s public pension system in the next several decades. This is a global problem known as the “pension crisis”. In this thesis, a long-term vision for China’s urban pension system is presented. Based on the mathematical models and the projections for demographic variables, economic variables and pension scheme variables, we test how the changes in key variables affect the balances of the pension fund in the next 27 years. This thesis applies methods of deterministic and stochastic modeling as well as sensitivity analysis to the problem. Using sensitivity analysis, we find that the pension fund balance is highly sensitive to the changes in retirement age compared with other key variables. Monte Carlo simulations are also used to find the possible distributions of the pension fund balance by the end of the projection period. Finally, according to my analysis, several changes in retirement age are recommended in order to maintain the sustainability of China’s urban basic pension scheme. Author Keywords: China, demographic changes, Monte Carlo simulation, pension fund, sensitivity tests, sustainability
Application of One-factor Models for Prices of Crops and Option Pricing Process
This thesis is intended to support dependent-on-crops farmers to hedge the price risks of their crops. Firstly, we applied one-factor model, which incorporated a deterministic function and a stochastic process, to predict the future prices of crops (soybean). A discrete form was employed for one-month-ahead prediction. For general prediction, de-trending and de-cyclicality were used to remove the deterministic function. Three candidate stochastic differential equations (SDEs) were chosen to simulate the stochastic process; they are mean-reverting Ornstein-Uhlenbeck (OU) process, OU process with zero mean, and Brownian motion with a drift. Least squares methods and maximum likelihood were used to estimate the parameters. Results indicated that one-factor model worked well for soybean prices. Meanwhile, we provided a two-factor model as an alternative model and it also performed well in this case. In the second main part, a zero-cost option package was introduced and we theoretically analyzed the process of hedging. In the last part, option premiums obtained based on one-factor model could be compared to those obtained from Black-Scholes model, thus we could see the differences and similarities which suggested that the deterministic function especially the cyclicality played an essential role for the soybean price, thus the one-factor model in this case was more suitable than Black-Scholes model for the underlying asset. Author Keywords: Brownian motion, Least Squares Method, Maximum Likelihood Method, One-factor Model, Option Pricing, Ornstein-Uhlenbeck Process
Modeling drought derivatives in arid regions
We propose a stochastic weather model based on temperature, precipitation, humidity and wind speed for Qatar, as a representative arid region, in order to obtain simulated values for a drought index. As a drought index, the Reconnaissance Drought Index (RDI) is commonly accepted in agriculture and is used to measure drought severity. It can be used to price weather derivatives to help farmers reduce nancial losses from drought. RDI, which is the ratio of precipitation to evapotranspiration, is calculated by considering crop growth stages. The use of dierent crop coecient value depending on the growth stage to calculate evapotranspiration can provide improved values for RDI. Additionally, six calculation methods for evapotranspiration using weather data are investigated to obtain accurate values for RDI. Author Keywords: Evapotranspiration, Markov chains, Mean reversion processes, Reconnaissance Drought Index, Stochastic dierential equations, Stochastic weather models
Effect of Listing a Stock on the S&P 500 Index on the Stock’s Volatility
This paper investigates the effect of listing a stock on the S&P 500 Index on the stock’s volatility, using various econometrics models: GARCH and EGARCH. The study mainly addresses three issues; firstly, it analyzes stock volatility in two sub-periods, secondly, it determines whether the announcement can account for the fluctuations in the price of the stock, and finally, it investigates the change in the stock’s variance. After isolating the effects of external and industry shock by using the returns on the S&P 500 Index as a proxy, the author finds evidence of structural change in the volatility of stocks after that stock is added to the index. Additionally, the existence of a dominant symmetric effect, which captures the response of volatility to news, indicate that following the onset of including the stock on the index, information flowing into the market increased. However, the rate at which old news is captured in price falls. The empirical evidence also suggests that on average a stocks variance falls and that the announcement to list a stock on the index has little effect on the stock’s price. Author Keywords: EGARCH, GARCH, S&P 500 Index, Symmetric Effect, Volatility
Smote and Performance Measures for Machine Learning Applied to Real-Time Bidding
In the context of Real-Time Bidding (RTB) the machine learning problems of imbalanced classes and model selection are investigated. Synthetic Minority Oversampling Technique (SMOTE) is commonly used to combat imbalanced classes but a shortcoming is identified. Use of a distance threshold is identified as a solution and testing in a live RTB environment shows significant improvement. For model selection, the statistical measure Critical Success Index (CSI) is modified to add emphasis on recall. This new measure (CSI-R) is empirically compared with other measures such as accuracy, lift, efficiency, true skill score, Heidke's skill score and Gilbert's skill score. In all cases CSI-R is shown to provide better application to the RTB industry. Author Keywords: imbalanced classes, machine learning, online advertising, performance measures, real-time bidding, SMOTE
An Application of the Sinc-Collocation Method in Oceanography
In this thesis, we explore the application of the Sinc-Collocation method to an oceanography model. The model of interest describes a wind-driven current with depth-dependent eddy viscosity and is formulated in two different systems; a complex-velocity system and a real-value coupled system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities at end-points. In addition, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is less sensitive to numerical errors. We present several model problems to demonstrate the accuracy, and stability of the method. We compare the approximate solutions determined by the Sinc-Collocation technique with exact solutions and also with those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the method we utilized outperforms those used in past studies. Author Keywords: Boundary Value Problems, Eddy Viscosity, Oceanography, Sinc Numerical Methods, Wind-Driven Currents
An Emprirical Investigation into the Relationship Between Education and Health
Health literature has long noted a positive correlation between health and levels of education. Two competing theories have been advanced to explain this phenomenon: (1) education "causes" health by allowing individuals to process complex information and act on it; and, (2) education and health are merely correlated through some third underlying characteristic. Determining which of these two theories is correct is of importance to public policy. But that task is empirically difficult because, from the standard, static perspective, the theories are observationally equivalent. We exploit a way in which the two theories have different implications regarding the sort of behaviour we should observe over time. We use smoking as a measure of health behaviour and find that smoking rates between "high" and "low" educated individuals expand when information is hard to process, and then contract as it becomes more easily processable. This approach is then repeated using physical activity as a measure of health-related behaviour to address limitations of the smoking model. Our novel approach to estimating the differences in the behavioural responses to changes in the processability of health-related information, across education groups, provides strong evidence in support of the view that education and health are causally linked. Author Keywords: applied statistics, education, health economics, public health, public policy, smoking

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Bell
  • (-) = Applied Modeling and Quantitative Methods
  • (-) = Pollanen

Filter Results

Date

2009 - 2019
(decades)
Specify date range: Show
Format: 2019/12/13

Author Last Name

Last Name (Other)

Show more