Graduate Theses & Dissertations

Biodiversity patterns along a forest time series in a remediated industrial landscape
Sudbury, Ontario is an epicenter of research on industrially degraded landscapes. Regreening efforts over the past 40 years have changed the landscape, leading to an increase in forest cover in the “barrens”, that once covered more than 100,000 ha. This study characterized changes in plant and insect composition using a space for time approach in the pine plantations. A total of 25 treated sites were sampled and soil characteristics, understory plants and insect communities were assessed. All sites were contaminated with copper and nickel, but the metals had little influence on biodiversity. Vegetation diversity metrics were more strongly correlated with the pH of the organic soil horizons, while the insect community shows little response to site characteristics, and rather vegetation cover. Plant composition changes are similar to those in pine stands undergoing natural recovery and as liming effects fade there may be a decline in insect community richness. Author Keywords: Biodiversity, Heavy Metals, Mining, Remediation
Calcium Stress in Daphnia Pulicaria and Exposure to Predator-Derived Cues
In recent decades, declining calcium concentrations have been reported throughout lakes across the southern edge of the Canadian Shield. This raises concern as Daphnia populations have shown to be decreasing as they require calcium not only for survival but to mitigate predation risks. Therefore, the purpose of my thesis was to study the adaptability of Daphnia under calcium limitation and predation risk from Chaoborus. Firstly, I examined the effects of calcium limitation and Chaobours kairomones on daphniid life-history and population growth. I found that low calcium concentrations and Chaoborus kairomones affected Daphnia calcium content, life-history traits, and survival. Next, I focused on how calcium concentrations and Chaoborus abundance affected the calcium content and abundance of daphniids. During this study, I also examined the relationship between the abundance of Daphnia and a competitor Holopedium. I found that calcium concentrations and the abundance of Chaoborus affects daphniid abundance. Overall, results from this study show the importance of considering both predation risk and calcium declines to better determine daphniid losses. Author Keywords: anti-predator responses, Chaoborus, competition , Life-History traits, predator cues, Zooplankton
Shorebird Habitat Use and Foraging Ecology on Bulls Island, South Carolina During the Non-Breeding Season
Recent declines in North American shorebird populations could be linked to habitat loss on the non-breeding grounds. Sea-level rise and increased frequency of coastal storms are causing significant erosion of barrier islands, thereby threatening shorebirds who rely on shoreline habitats for foraging. I conducted shorebird surveys on Bulls Island, South Carolina in the winters of 2018 and 2019 and examined habitat selection and foraging behaviour in Dunlin (Calidris alpina), Sanderling (Calidris alba), Semipalmated Plovers (Charadrius semipalmatus), and Piping Plovers (Charadrius melodus). Area, tidal stage, and invertebrate prey availability were important determinants of shorebird abundance, behaviour, and distribution. My study highlights the importance of Bulls Island’s habitat heterogeneity to supporting a diverse community of non-breeding shorebirds. Considering both the high rate of erosion and the increased frequency of disturbance along the shoreline of the island, intertidal habitats should be monitored to predict negative effects of changes in habitat composition and area on non-breeding shorebirds. Author Keywords: foraging behaviour, habitat loss, habitat selection, invertebrate prey, non-breeding, shorebirds
Population Genetics and Scarification Requirements of Gymnocladus dioicus
The Kentucky coffee tree (Gymnocladus dioicus) is an endangered tree species native to the American Midwest and Southwestern Ontario. Significant habitat loss and fragmentation due to agricultural, industrial and urban development has caused gradual decline across its native range. The aims of this study were to investigate: (1) patterns of genetic diversity and, (2) genetic differentiation (3) relative levels of sexual vs. clonal reproduction, and (4) potential for reduced genetic diversity at range edge for wild G. dioicus populations. An analysis of variation at nine microsatellite loci from populations in the core of the species distribution in the U.S.A. and 4 regions of Southwestern Ontario indicated that G. dioicus has remarkably high genetic similarity across its range (average pairwise FST= 0.05). Germination trials revealed that the seed coats require highly invasive treatments (e.g. 17.93 mol/L H2SO4) to facilitate imbibition, with negligible germination observed in treatments meant to emulate prevailing conditions in natural populations. Low levels of sexual reproduction, high genetic similarity, and habitat degradation are issues that exist across the entire native range of G. dioicus. Author Keywords:
Reintroducing species in the 21st century
Climate change has had numerous impacts on species' distributions by shifting suitable habitat to higher latitudes and elevations. These shifts pose new challenges to biodiversity management, in particular translocations, where suitable habitat is considered crucial for the reintroduced population. De-extinction is a new conservation tool, similar to reintroduction, except that the proposed candidates are extinct. However, this novel tool will be faced with similar problems from anthropogenic change, as are typical translocation efforts. Using ecological niche modelling, I measured suitability changes at translocation sites for several Holarctic mammal species under various climate change scenarios, and compared changes between release sites located in the southern, core, and northern regions of the species' historic range. I demonstrate that past translocations located in the southern regions of species' ranges will have a substantial decline in environmental suitability, whereas core and northern sites exhibited the reverse trend. In addition, lower percentages (< 50% in certain scenarios) of southern sites fall above the minimal suitability threshold for current and long-term species occurrence. Furthermore, I demonstrate that three popular de-extinction candidate species have experienced changes in habitat suitability in their historic range, owing to climate change and increased land conversion. Additionally, substantial increase in potentially suitable space is projected beyond the range-limits for all three species, which could raise concerns for native wildlife if de-extinct species are successfully established. In general, this thesis provides insight for how the selection of translocation sites can be more adaptable to continued climate change, and marks perhaps the first rigorous attempt to assess the potential for species de-extinction given contemporary and predicted changes in land use and climate. Author Keywords: climate change, de-extinction, ecological niche models, MaxEnt, reintroduction, translocation
Nutritional stoichiometry and growth of filamentous green algae (Family Zygnemataceae) in response to variable nutrient supply
In this study, I investigate the effects of nitrogen (N) and phosphorus (P) on the nutritional stoichiometry and growth of filamentous green algae of the family Zygnemataceae in situ and ex situ. I found a mean of Carbon (C):N:P ratio of 1308:66:1 for populations growing in the Kawartha Lakes of southern Ontario during the summer of 2012. FGA stoichiometry was variable, with much of the variation in algal P related to sediment P (p < 0.005, R2 = 0.58). Despite large variability in their cellular nutrient stoichiometry, laboratory analysis revealed that Mougeotia growth rates remained relatively consistent around 0.28 day-1. In addition, Mougeotia was found to be weakly homeostatic with respect to TDN:TDP supply (1/HNP = 0.32). These results suggest that FGA stoichiometry and growth rates are affected by sediment and water N and P. However, they will likely continue to grow slowly throughout the summer despite variable nutrient supply. Author Keywords: Chlorophyll concentration, Filamentous algae, Growth rate, Homeostatic regulation, Nutritional stoichiometry
Longitudinal trends of benthic invertebrates in regulated rivers
The Serial Discontinuity Concept describes the downstream recovery of key biophysical variables below an impoundment. With the proliferation of hydropower dams to meet increasing societal demands, further refinement and understanding of the Serial Discontinuity Concept is needed to accurately predict downstream impacts and ensure the proper management of rivers. In this study, I examine SDC predictions on physical, chemical and biological recovery in regulated rivers providing evidence from 1) a comprehensive literature review and 2) a formal test using two regulated rivers in Northern Ontario. I specifically address how these changes are reflected in benthic invertebrate abundance, diversity, and community composition. The literature review and case studies support the predicted recovery of temperature, periphyton, substrate, and drift. In addition, the study suggests that two recovery gradients exist in regulated rivers: 1) a longer, thermal gradient taking up to hundreds of kilometres downstream; and 2) a shorter, resource subsidy gradient recovering within 1-4 km downstream of an impoundment. Total benthic invertebrate abundance varies considerably and depends on the degree of flow alteration and resource subsidies from the upstream reservoir. In contrast, benthic diversity is reduced below dams irrespective of dam location and operation with little recovery observed downstream. Contrary to SDC predictions, the longitudinal gradient in regulated rivers is not a compaction of functional changes seen over several stream orders in natural rivers but a response to dam design and reservoir conditions. Stoneflies and dragonflies are particularly sensitive to regulation while filter feeding invertebrates are enhanced. Ward and Stanford's (1983) Serial Discontinuity Concept is still a useful framework for testing hypotheses. Future studies should further expand the SDC through empirical estimation within the context of the landscape to gain a better scientific understanding of regulated river ecology. Author Keywords: benthic invertebrates, dams, longitudinal, recovery, River Continuum Concept, Serial Discontinuity Concept
Carbon and Nitrogen Isotope Changes in Streams along an Agricultural Gradient
Nitrogen is a major constituent of agricultural fertilizers, and nitrogen inputs to stream water via runoff and groundwater lead to a variety of negative environmental impacts. In order to quantify the movement of nitrogen through aquatic food webs, fourteen streams with varying land uses across South-Central Ontario were sampled for two species of fish, freshwater mussels, and water for measurement of isotope ratios of δ15N and δ13C. I found that nitrogen isotopes in fish, water, and mussels were related to the percentage of riparian monoculture, and that carbon isotopes were unrelated to monoculture. Though all species were enriched as monoculture increased, the rate of δ15N enrichment as monoculture increased did not vary between species. This study has improved our understanding of how monoculture affects nutrient enrichment in stream food webs, and assesses the validity of using nitrogen isotopes to measure trophic positions of aquatic organisms across an environmental gradient. Author Keywords: agriculture, fish, food webs, nitrogen, stable isotopes, streams
Factors Controlling Peat Chemistry and Vegetation Composition in Sudbury Peatlands after 30 Years of Emission Reductions
Peatlands are prevalent in the Sudbury, Ontario region. Compared with the well documented devastation to the terrestrial and aquatic ecosystems in this region, relatively little work has been conducted on the peatlands. The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands in Sudbury after over 30 years of emission reductions. Peatland chemistry and the degree of humification varies considerably, but sites closer to the main smelter had more humified peat and the surface horizons were enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with Cu and Ni in the plant tissue of leatherleaf, although the increased foliar metal content did not obviously impact secondary chemistry stress indicators. The pH and mineral content of peat were the strongest determining factors for species richness, diversity and community composition. The bryophyte communities appear to be acid and metal tolerant, although Sphagnum mosses are showing limited recovery. Author Keywords: anthropogenic emissions, bryophytes, community comspoition, heavy metals, peatlands, wetland vegetation

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Doctor of Philosophy
  • (-) ≠ Business education
  • (-) = Environmental science
  • (-) = Ecology