Graduate Theses & Dissertations


Assessing effects and fate of environmental contaminants in invasive, native, and endangered macrophytes
Macrophytes play an important role in aquatic ecosystems, and thus are integral to ecological risk assessments of environmental contaminants. In this dissertation, I address gaps in the assessments of contaminant fate and effects in macrophytes, with focus on glyphosate herbicide use for invasive plant control. First, I evaluated the suitability of Typha as future standard test species to represent emergent macrophytes in risk assessments. I concluded that Typha is ecologically relevant, straight-forward to grow, and its sensitivity can be assessed with various morphological and physiological endpoints. Second, I assessed effects from glyphosate (Roundup WeatherMAX® formulation) spray drift exposure on emergent non-target macrophytes. I performed toxicity tests with five taxa, Phragmites australis, Typha × glauca, Typha latifolia, Ammannia robusta, and Sida hermaphrodita, which in Canada collectively represent invasive, native, and endangered species. I found significant differences in glyphosate sensitivity among genera, and all species’ growth was adversely affected at concentrations as low as 0.1% (0.54 g/L), much below the currently used rate (5%, 27 g/L). Third, I assessed the potential for glyphosate accumulation in and release from treated plant tissues. I found that P. australis and T. × glauca accumulate glyphosate following spray treatment, and that accumulated glyphosate can leach out of treated plant tissues upon their submergence in water. Finally, I assessed effects of released glyphosate on non-target macrophytes. I found that P. australis and T. × glauca leachate containing glyphosate residues can stimulate the germination and seedling growth of T. latifolia, but can exert an inhibiting effect on A. robusta, although leachate without glyphosate caused similar responses in both plants. Additionally, I found no negative effects in A. robusta when exposed to glyphosate residues in surface water, or when grown with rhizosphere contact to an invasive plant that was wicked (touched) with glyphosate. My results show that non-target macrophytes can be at risk from glyphosate spray for invasive plant control, but risks can be mitigated through informed ecosystem management activities, such as targeted wick-applications or removing plant litter. Integrating contaminant fate and effect assessments with emergent macrophytes into ecological risk assessments can support the protection of diverse macrophyte communities. Author Keywords: Ecosystem management, Ecotoxicology, Glyphosate, Herbicide, Invasive plant, Species at risk
Biodiversity patterns along a forest time series in a remediated industrial landscape
Sudbury, Ontario is an epicenter of research on industrially degraded landscapes. Regreening efforts over the past 40 years have changed the landscape, leading to an increase in forest cover in the “barrens”, that once covered more than 100,000 ha. This study characterized changes in plant and insect composition using a space for time approach in the pine plantations. A total of 25 treated sites were sampled and soil characteristics, understory plants and insect communities were assessed. All sites were contaminated with copper and nickel, but the metals had little influence on biodiversity. Vegetation diversity metrics were more strongly correlated with the pH of the organic soil horizons, while the insect community shows little response to site characteristics, and rather vegetation cover. Plant composition changes are similar to those in pine stands undergoing natural recovery and as liming effects fade there may be a decline in insect community richness. Author Keywords: Biodiversity, Heavy Metals, Mining, Remediation
Anthropogenic particles and microplastics in headwater lake catchments in Muskoka-Haliburton, Canada
Microplastics, plastic particles less than 5 mm in diameter, are ubiquitous in the environment. This study estimated the abundance of microplastics (MP) in atmospheric deposition from four background monitoring stations in Muskoka-Haliburton, south-central Ontario, Canada and quantified the fate of microplastics to three background headwater lake catchments in Muskoka-Haliburton. Microplastics were observed across all sample media with polyethylene terephthalate and polyamide being predominant. The average atmospheric deposition of anthropogenic particles was 57 particles/m2/day with a plastic deposition rate of 7 MP/m2/day. Atmospheric deposition represented the highest daily microplastic flux rate to the three headwater lake catchments compared, 1.5 to 4 times greater than the flux rate for the inflow streams suggesting that atmospheric deposition can account for all the inflowing microplastics. A large fraction of the microplastics from atmospheric deposition (41 – 73%) were retained in the terrestrial catchment and there was a high retention of microplastics in each of the study lakes (1.44 – 7.39 million MP/day; 30 – 45%) suggesting that a large fraction of the terrestrial catchment export is retained by the lakes and that lakes are a reservoir for microplastics. Author Keywords: Atmospheric deposition, Microplastics, Ontario, Plastic pollution, Sinks, Sources
Assessing Brook Trout (Salvelinus fontinalis) Seasonal Occupancy in Haliburton County, ON Using Environmental DNA
Brook trout (Salvelinus fontinalis) are declining across Ontario in both numbers and distribution, prompting concern for their future. Here, conventional, emerging, and predictive tools were combined to document brook trout occupation across seasons using streams in Haliburton County, ON as model systems. By using the Ontario Ministry of Natural Resources and Forestry’s (OMNRFs) Aquatic Ecosystem Classification (AEC) system variables with environmental DNA (eDNA) sampling and backpack electrofishing, my research supports the development of species occupancy models (SOMs) and eDNA as tools to document brook trout occurrence. To do this, eDNA sampling was validated in Canadian Shield stream environments by comparison with single-pass backpack electrofishing before seasonally sampling two river systems across their main channel and tributaries to assess occupancy. Streams were classified as potential high, moderate, and low-quality brook trout habitats using indicator variables within the AEC and sampled seasonally with eDNA to quantify occupancy and relate it to habitat potential at the county scale. Results showed eDNA to be an effective tool for monitoring fish across Canadian Shield landscapes and that brook trout occupancy varied seasonally within and across watersheds, suggesting that habitat and fish management strategies need to consider seasonal movement and spatial connectivity. Using these tools will enable biologists to efficiently predict and document brook trout occurrences and habitat use across the landscape. Author Keywords: Aquatic Ecosystem Classification, brook trout, Canadian Shield, connectivity, environmental DNA, seasonal occupation
Automated Separation and Preconcentration of Ultra-Trace Levels of Radionuclides in Complex Matrices by Online Ion Exchange Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
Radionuclides occur in the environment both naturally and artificially. Along with weapons testing and nuclear reactor operations, activities such as mining, fuel fabrication and fuel reprocessing are also major contributors to nuclear waste in the environment. In terms of nuclear safety, the concentration of radionuclides in nuclear waste must be monitored and reported before storage and/or discharge. Similarly, radionuclide waste from mining activities also contains radionuclides that need to be monitored. In addition, a knowledge of ongoing radionuclide concentrations is often required under certain ‘special’ conditions, for example in the area surrounding nuclear and mining operations, or when nuclear and other accidents occur. Thus, there is a huge demand for new methods that are suitable for continuously monitoring and rapidly analyzing radionuclide levels, especially in emergency situations. In this study, new automated analytical methods were successfully developed to measure ultra trace levels of single or multiple radionuclides in various environmental samples with the goal of faster analysis times and less analyst involvement while achieving detection limits suitable for typical environmental concentrations. Author Keywords: automation, ICP-MS, ion exchange, radionuclide
Enhanced weathering and carbonation of kimberlite residues from South African diamond mines
Mafic and ultramafic mine wastes have the potential to sequester atmospheric carbon dioxide (CO2) through enhanced weathering and CO2 mineralization. In this study, kimberlite residues from South African diamond mines were investigated to understand how weathering of these wastes leads to the formation of secondary carbonate minerals, a stable sink for CO2. Residues from Venetia Diamond Mine were fine-grained with high surface areas, and contained major abundances of lizardite, diopside, and clinochlore providing a maximum CO2 sequestration capacity of 3–6% of the mines emissions. Experiments utilized flux chambers to measure CO2 drawdown within residues and unweathered kimberlite exhibited greater negative fluxes (-790 g CO2/m2/year) compared to residues previously exposed to process waters (-190 g CO2/m2/year). Long-term weathering of kimberlite residues was explored using automated wet-dry cycles (4/day) over one year. Increases in the δ13C and δ18O values of carbonate minerals and unchanged amount of inorganic carbon indicate CO2 cycling as opposed to a net increase in carbon. Kimberlite collected at Voorspoed Diamond Mine contained twice as much carbonate in yellow ground (weathered) compared to blue ground, demonstrating the ability of kimberlite to store CO2 through prolonged weathering. This research is contributing towards the utilization of kimberlite residues and waste rock for CO2 sequestration. Author Keywords: CO2 fluxes, CO2 mineralization, CO2 sequestration, Enhanced weathering, Kimberlite, Passive carbonation
Calcium Stress in Daphnia Pulicaria and Exposure to Predator-Derived Cues
In recent decades, declining calcium concentrations have been reported throughout lakes across the southern edge of the Canadian Shield. This raises concern as Daphnia populations have shown to be decreasing as they require calcium not only for survival but to mitigate predation risks. Therefore, the purpose of my thesis was to study the adaptability of Daphnia under calcium limitation and predation risk from Chaoborus. Firstly, I examined the effects of calcium limitation and Chaobours kairomones on daphniid life-history and population growth. I found that low calcium concentrations and Chaoborus kairomones affected Daphnia calcium content, life-history traits, and survival. Next, I focused on how calcium concentrations and Chaoborus abundance affected the calcium content and abundance of daphniids. During this study, I also examined the relationship between the abundance of Daphnia and a competitor Holopedium. I found that calcium concentrations and the abundance of Chaoborus affects daphniid abundance. Overall, results from this study show the importance of considering both predation risk and calcium declines to better determine daphniid losses. Author Keywords: anti-predator responses, Chaoborus, competition , Life-History traits, predator cues, Zooplankton
Development of a Cross-Platform Solution for Calculating Certified Emission Reduction Credits in Forestry Projects under the Kyoto Protocol of the UNFCCC
This thesis presents an exploration of the requirements for and development of a software tool to calculate Certified Emission Reduction (CERs) credits for afforestation and reforestation projects conducted under the Clean Development Mechanism (CDM). We examine the relevant methodologies and tools to determine what is required to create a software package that can support a wide variety of projects involving a large variety of data and computations. During the requirements gathering, it was determined that the software package developed would need to support the ability to enter and edit equations at runtime. To create the software we used Java for the programming language, an H2 database to store our data, and an XML file to store our configuration settings. Through these choices, we can build a cross-platform software solution for the purpose outlined above. The end result is a versatile software tool through which users can create and customize projects to meet their unique needs as well as utilize the features provided to streamline the management of their CDM projects. Author Keywords: Carbon Emissions, Climate Change, Forests, Java, UNFCCC, XML
Ecosystem Response to Above Canopy Nitrogen Addition in a Jack Pine (Pinus banksiana) Forest in the Athabasca Bituminous Sands Region of Northeastern Alberta, Canada
In this study we seek to better understand the potential effects of short-term (5-year) N fertilization on jack pine forest biogeochemistry, vascular plant community composition and to project a temporal endpoint of nitrogen leaching below the major rooting zone. Aqueous ammonium nitrate (NH4NO3) was applied above the forest canopy across five treatment plots (20 x 80 m) four times annually. The experimental deposition gradient followed those known for localized areas around the major open pit operations at 0, 5, 10, 15, 20 and 25 kg N ha-1 yr-1 over a five-year period (2011 – 2015). Nitrate recovery in throughfall was significantly higher than NH4+ (p < 0.05), indicating canopy NH4+ immobilization. There was a strong treatment effect (p < 0.05) of N on the epiphytic lichen thalli concentrations of Hypogymnia physodes and Evernia mesomorpha after five years. The canopy appeared to approach saturation at the highest deposition load (25 kg N ha-1 yr-1) during the fifth year of N additions as most N added above the canopy was accounted for in throughfall and stemflow. The non-vascular (lichen and moss) vegetation pool above the forest floor was the largest receptor of N as cryptogam foliar and thalli N concentrations showed a significant treatment effect (p < 0.05). Nitrogen in decomposing litter (25 kg N ha-1 yr-1) remained immobilized after five years, while treatments ≤ 20 kg N ha-1 yr-1 started to mobilize. Understory vascular plant cover expansion was muted when deposition was ≥ 10 kg N ha-1 yr-1. Finally, modeling suggests the forest may not leach N below the rooting zone until around 50 years after chronic addition begin (25 kg N ha-1 yr-1). The modeling results are consistent with empirical data from a high exposure (~20 - 25 kg N ha-1 yr-1) jack pine site approximately 12 km west of the experimental site that has not yet experienced N leaching. Author Keywords: Biogeochemistry, Canopy, Deposition, Jack Pine, Nitrogen, Understory
Phosphorus delivery in the Rainy-River Lake of the Woods Watershed
Lake of the Woods (LOW) is a large international waterbody which suffers from frequent and widespread algae blooms. Previous studies have highlighted the importance of the lake's largest tributary, the Rainy River (RR) and its significance in total phosphorus (TP) delivery to the LOW. Unfortunately, little is known about TP contributions from the RR and its tributaries within the Canadian portion of the watershed. This thesis examines patterns and sources of TP from four tributaries on the Canadian side of the lower RR region, two of which are predominantly natural, and two that are predominantly agricultural. Relationships between water quality parameters, land use and geologic characteristics were observed over a complete hydrologic year (Oct 1, 2018 - Sept 31, 2019), and through an intensive sampling campaign using a nested watershed approach during the spring high flow and summer low flow periods. Results revealed that TP and total suspended sediment (TSS) concentrations (>100 µg/L and >20 mg/L respectively), and loads (>20 kg/km2 and >3500 kg/km2, respectively), were greater at agricultural sites compared with natural sites (<65 µg/L TP and <15 mg/L TSS concentration, and <20 kg/km2 TP and <4000 kg/km2 TSS export). Total P, TSS, Fe, and Al were significantly positively correlated (R2= 0.26-0.59; p<0.05) and intensive sampling revealed that these relationships were strongest during the spring and at the agricultural sites (R2= 0.73-0.98; p<0.05). In contrast, the summer intensive sampling revealed that TP and redox sensitive Fe were significantly correlated (R2= 0.72; p<0.005), whereas redox insensitive Al and TSS were not, suggesting TP may be sourced via redox processes in the summer due to favourable hydrologic conditions. This was observed not only at sites with high wetland influence, but also at sites with more agricultural presence suggesting that redox sourced TP may also originate from mineral stream bed sediment during low flow periods. This research suggested two primary TP sources in the lower RR region: erosion in the spring, and redox processes (internal release) in the summer. It is recommended that intensive monitoring continue in Canada, and further research be conducted to fully understand the significance of internal P release in the tributaries. Author Keywords: erosion, land use, nutrients, particulates, redox, water quality
Legacy Effects Associated with the World’s Largest Ongoing Liming and Forest Regeneration Program in Sudbury, Ontario, Canada
Soil and tree chemistry were measured across 15 limed sites that were established 14 to 37 years ago within the Sudbury barrens in Ontario, along with two unlimed pre-treatment condition reference sites and an unlimed remnant pine forest. Soil pH and base cation (calcium (Ca), magnesium (Mg), and potassium (K)) concentrations were elevated in surface organic [FH] horizons up to 37-years post limestone treatment. Limestone in the organic horizon was evident by higher Ca/Sr ratios (a good marker of dolomite) in younger sites. Base cation mass budgets were generally unable to account for the mass of added Ca and Mg. Sudbury is characterized by widespread metal contamination. Metal (copper (Cu), nickel (Ni), and lead (Pb)) concentrations were generally greatest within the FH horizon and unrelated to stand age. Copper and Ni concentrations in soil generally decreased with distance from the nearest smelter. Metal partitioning (Kd) in soil was most influenced by soil pH rather than organic matter suggesting that as liming effects fade over time metal availability may increase. Author Keywords: Afforestation, Degraded, Limestone, nutrient, Space-for-time, Sudbury
Effects of hydrologic seasonality on dissolved organic matter composition, export, and biodegradability in two contrasting streams
Environmental and seasonal processes are important watershed drivers controlling the amount, composition, and fate of dissolved organic matter (DOM) in aquatic ecosystems. We used ten months of water samples and eight months of bioassay incubations from two contrasting catchments (agriculture and natural, forested) to assess the effects of seasonal variability on the composition, export, and biodegradability of DOM. As expected, the DOM composition and exports were more allochthonous-like and autochthonous-like in the forest and agriculture streams, respectively. However, we found no relationship between DOM composition and biodegradability in our study, suggesting that broad environmental factors play a large part in determining bioavailability of DOM. We found that both differences between the catchments and seasonal variability in hydrology and water temperature cause shifts in DOM composition that can affect exports and potentially affect its susceptibility to microbial activity. More research is needed to fully understand the impact of land use and temporal variability on bioavailability and delivery to downstream ecosystems. Author Keywords: Bioavailable dissolved organic carbon, Biodegradability, Dissolved organic matter, Export, Seasonality, Streams


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Master of Arts
  • (-) = Environmental science

Filter Results


2012 - 2032
Specify date range: Show
Format: 2022/01/23