Graduate Theses & Dissertations

Pages

Nunavik Inuit Knowledge of Beluga
Socio-ecological systems are inherently complex and marine mammals are fundamentally challenging to study. In the Arctic, marine mammals occupy a central ecological role, as nutrient cyclers and as a source of food and culture for Indigenous peoples. Inuit have developed a rich knowledge system, which has not been fully actualized in application in most Arctic research. Considering the need for the best available information in marine mammal ecology, the research question guiding this dissertation was: How can multiple methods and approaches be used to more effectively gather, understand, and represent Inuit Knowledge for an improved understanding of marine mammal ecology? The dissertation investigates this question using a case study of beluga in Nunavik (Arctic Quebec) drawing on the expertise of hunters and Elders to better understand complex questions in marine mammal ecology. The thesis uses a transdisciplinary approach to address the dissertation objective and is comprised of a general introduction, followed by four chapters formatted as journal manuscripts, and closes with an integrated discussion and conclusion. The first manuscript examines the contributions of Traditional Ecological Knowledge (TEK) of beluga to marine mammal literature. The second manuscript uses a sub-set of data gathered through participant mapping to apply a mapping method to explore how the spatial aspects of TEK could be better documented, analyzed, and represented. The third and fourth papers are based on the knowledge shared by hunters and Elders. The third explores the questions ‘why do beluga migrate?’ and ‘what factors influence beluga movement?’. The fourth investigates aspects of beluga foraging ecology. This dissertation makes methodological contributions through the application of kernel density estimators to participant maps as a method for transforming multiple mapped narratives into a quantitative database. The understandings shared by hunters and Elders make significant ecological contributions, particularly to foraging (e.g. diet composition and seasonal energy intake), and movement ecology (e.g. potential drivers of migration). Broadly these findings contribute to our collective understanding of beluga ecology and have implications for wildlife management. Author Keywords: Arctic, Beluga biology, foraging ecology, Inuit Knowledge, migration, transdisciplinary
successful invader in expansion
Researchers have shown increasing interest in biological invasions for the associated ecological and economic impacts as well as for the opportunities they offer to study the mechanisms that induce range expansion in novel environments. I investigated the strategies exhibited by invasive species that facilitate range expansion. Invasive populations exhibit shifts in life-history strategy that may enable appropriate responses to novel biotic and abiotic factors encountered during range expansion. The spatio-temporal scales at which these shifts occur are largely unexplored. Furthermore, it is not known whether the observed dynamic shifts represent a consistent biological response of a given species to range shifts, or whether the shifts are affected by the abiotic characteristics of the new systems. I examined the life-history responses of female round gobies Neogobius melanastomus across fine and coarser spatial scales behind the expansion front and investigated whether invasive populations encountering different environmental conditions (Ontario vs France) exhibited similar life-history shifts. In both study systems, I found an increase in reproductive investment at invasion fronts compared to longer established areas at coarse and fine scales. The results suggest a similar response to range shifts, or a common invasion strategy independent of environmental conditions experienced, and highlight the dynamic nature of an invasive population’s life history behind the invasion front. The second part of my research focused on the development of an appropriate eDNA method for detecting invasive species at early stages of invasion to enable early detection and rapid management response. I developed a simple, inexpensive device for collecting water samples at selected depths for eDNA analysis, including near the substrate where eDNA concentration of benthic species is likely elevated. I also developed a protocol to optimise DNA extraction from water samples that contain elevated concentration of inhibiters, in particular near-bottom samples. Paired testing of eDNA and conventional surveys was used to monitor round goby expansion along its invasion pathway. Round gobies were detected in more sites with eDNA, permitting earlier, more accurate, upstream detection of the expansion front. My study demonstrated the accuracy and the power of using eDNA survey method to locate invasion fronts. Author Keywords: Age-specific reproductive investment, DNA extraction, Energy allocation, Fecundity, Invasion front, Range expansion
Social thermoregulation and potential for heterothermy
Northern and southern flying squirrels (Glaucomys sabrinus and G. volans, respectively) are experiencing a climate change induced increase in range overlap, resulting in recent hybridization. We investigated the occurrence of heterospecific communal nesting, a potential facilitator of hybridization, and aimed to confirm the presence of torpor, a potential barrier to hybridization, in flying squirrels. In wild-caught captive squirrels, we conducted a paired nest choice experiment and found that heterospecific nesting did occur, but in a lower frequency than conspecific nesting. Ambient temperature did not affect the frequency of grouped nesting. We attempted to induce torpor in flying squirrels in a laboratory through cold exposure while measuring metabolic rate and body temperature. Strong evidence of torpor was not observed, and metabolic rate remained unchanged with season. We conclude that torpor is not a barrier to hybridization in flying squirrels, but resistance to heterospecific nesting may indicate the existence of one. Author Keywords: heterospecific group, hybridization, northern flying squirrel, social thermoregulation, southern flying squirrel, torpor
Genetic diversity and differentiation of Ontario’s recolonizing fishers (Pekania pennanti)
Fishers (Pekania pennanti) were extirpated from many parts of Ontario in the early 20th century, but as of the early 2000s the species had recolonized most of its historical range. While the primary population genetic structure of fishers in central and eastern Ontario has not changed drastically over the past ten years, we did find evidence of increased secondary structure and a reduction in northward movement from southeastern Ontario, a site of recent immigration from the Adirondacks in northern New York. This may be indicative of a reduction in density and thus in density-dependent migration, or it may be a consequence of the population reaching equilibrium following a period of rapid expansion associated with recolonization. We also observed no variation within central and eastern Ontario at 14 of 15 candidate functional loci we screened, suggesting possible directional or stabilizing selection and a lack of adaptive potential. Author Keywords: fisher, functional genes, Ontario, Pekania pennanti, population genetics, recolonization
Time-dependent effects of predation risk on stressor reactivity and growth in developing larval anurans (Lithobates pipiens)
The predator vs. prey dynamic is an omnipresent factor in ecological systems that may drive changes in life history patterns in prey animals through behavioural, morphological, and physiological changes. Predation risk can have profound effects on the life history events of an animal, and is influenced by the neuroendocrine stress response. Activation of the hypothalamic-pituitary-adrenal/interrenal axis, and the induction of stress hormones (e.g., corticosterone (CORT)) have been shown to mediate the onset of inducible anti-predator defensive traits including increased tail-depth, and reduced activity. The predator-prey relationship between dragonfly nymphs and tadpoles can be a powerful model system for understanding mechanisms that facilitate changes in the stress response in accordance with altered severity of risk. It has been well demonstrated early in tadpole ontogeny that increased corticosterone (CORT) levels, observed within three weeks of predator exposure, are correlated with increased tail depth morphology. However, the reactivity of the stress response in relation to the growth modulation in developing prey has yet to be fully explored. Accordingly, this thesis assessed the stress and growth response processes in tadpoles that were continuously exposed to perceived predation risk later in ontogeny. Continuous exposure of prey to predation risk for three weeks significantly increased CORT levels, and tail depth. However, tadpoles exposed to six weeks of predation risk acclimated to the presence of the predator, which was observed as a significant reduction of stressor-induced CORT levels. In addition, although increased tail depth has been attributed to predator defense, predator-naïve tadpoles began to display similar tail depth morphology as treated tadpoles at the six week time point. Thus, this thesis suggests that the stress response in lower vertebrate systems (e.g., tadpoles) may operate in a similarly complex manner to that observed in higher vertebrates (e.g., rats), for which severity of risk associated with the stressor aids in defining activity of the stress response. Moreover, the lack of morphological difference between treatments among tadpoles exposed later in ontogeny suggests that the mechanisms for inducing defenses are normal morphological traits in the development of the animal. This thesis paves the way for future research to elucidate the relationship between the neuroendocrine stress response and hormonal pathways involved in growth modulation in the presence of environmental pressures. Author Keywords: Acclimation, Corticosterone, Growth Modulation, Predation Risk, R. pipiens, Tadpole
Executive Function as a Predictor of Emotional, Behavioural, and Social Competence Problems in Children with Epilepsy
The study aimed to examine the association between different components of executive function (EF) and emotional, behavioural, and social competence problems (EBSP) in children with epilepsy. Although there is evidence of an association between EBSP and EF in typically developing children, little research has examined this relation in children with epilepsy. The sample comprised of 42 children with epilepsy, aged 6.0 to 18.1 years old. Results showed that EBSP were associated with EF in these children; however, different components of EF were related to different EBSP. Shifting was a significant predictor of emotional, behavioural, and social competence problems in children with epilepsy, whereas inhibition was a significant predictor of behavioural problems. This suggests that children with epilepsy, with different EF profiles may be at-risk for developing different types of problems. These results may aid researchers and clinicians with the development of new techniques to identify and treat children with EBSP. Author Keywords: behavioural problems, emotional problems, epilepsy, executive function, social competence
Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin
The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine’s role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket. Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis
Elemental Variation in Daphnia
Environmental variation can affect consumer trait expression and alter ecological and evolutionary dynamics in natural populations. However, although dietary nutrient content can vary by an order of magnitude in natural ecosystems, intra-specific differences in consumer responses to food quality have not been thoroughly investigated. Therefore, the purpose of my dissertation was to examine the influence of dietary nutrition and other environmental factors on consumer phenotypic variation using the freshwater cladoceran Daphnia. I conducted a series of complementary laboratory and field studies where I examined the effects of dietary phosphorus (P) content and additional biological/environmental variables (multi-elemental limitation, genetic variation, and temperature) on daphnid life-history, biochemistry, body elemental composition, and population growth. In general, phenotypic expression within a species varied significantly in response to all experimental variables, but the relative influence of each was highly context dependent. In my first chapter, I found that dietary P content and environmental calcium (Ca) concentrations both altered Daphnia body Ca:P ratios and growth rates of individuals and affected intrinsic rates of increase at the population level. However, food quality appeared to have a much larger effect on trait expression, and body Ca:P ratios were highly sensitive to other forms of dietary nutrient limitation. Next, I documented significant quantitative genetic variation and phenotypic plasticity in daphnid P content, growth, and P use efficiency of field collected animals grown across dietary P gradients. Trait expression was also influenced by genotype X diet interactions suggesting that consumer responses to dietary nutrient limitation can be heritable and may be adaptive in different nutrient environments. Finally, I found that temperature appeared to override food quality effects and decouple P metabolism in natural Daphnia populations, but total biomass production was affected by both dietary P content and temperature, depending on the nutrient content of the lake. Overall, my dissertation shows that consumer responses to nutrient limitation can vary significantly within a species and that changes in trait expression may be modified by other environmental variables. These results should be incorporated into existing stoichiometric models and used to investigate the eco-evolutionary consequences of consumer phenotypic variation in response to nutritional stress. Author Keywords: ecological stoichiometry, evolution, life-history, nutrient limitation, nutrient metabolism, zooplankton
Constraints on phenotypic plasticity in response to predation risk
Inducible defenses are plastic responses by an organism to the perception of predation risk. This dissertation focuses on three experiments designed to test the hypothesis that plastic ability is limited by energetic constraints. Chapter 1 provides a general introduction to phenotypic plasticity research and the theoretical costs and limitations affecting the expression of plastic traits. In Chapter 2, I tested the hypothesis that costs of early plasticity may be manifested by a reduced response to risk in later life stages. I found that amphibian embryos are able to detect and respond to larval predators, but that the energetic cost of those plastic responses are not equivalent among behavioural, growth, and morphological traits, and their expression differs between closely-related species. Chapter 3 explicitly examines the relationship between food resource availability and plasticity in response to perceived predation risk during larval development. Food-restricted tadpoles showed limited responses to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. Chapter 4 examines the influence of maternal investment into propagule size on the magnitude of the plastic responses to predation risk in resulting offspring. I found that females in better body condition laid larger eggs and that these eggs, in turn, hatched into larvae that showed greater morphological plasticity in response to predation risk. Maternal investment can therefore affect the ability of offspring to mount morphological defenses to predation risk. Last, Chapter 5 provides a synthesis of my research findings, identifying specific factors constraining the plastic responses of prey to perceived predation risk. Overall, I found constraints on plastic responses imposed by the current environment experienced by the organism (resource availability), the prior experience of the organism (predator cues in the embryonic environment), and even the condition of the previous generation (maternal body condition and reproductive investment). Together, these findings both provide new knowledge and create novel research questions regarding constraints limiting phenotypic variation in natural populations. Author Keywords: behaviour, inducible defense, Lithobates pipiens, morphometrics, phenotypic plasticity, predation risk
Mfsd8 regulates growth and multicellular development in Dictyostelium discoideum
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, are a family of inherited neurodegenerative lysosomal storage disorders. CLN7 disease is a subtype of NCL that is caused by mutations in the MFSD8 gene. MFSD8 encodes a lysosomal transmembrane protein that is predicted to play a role in transporting small substrates across membranes. However, little is known about its role and substrate specificity. Previous work identified an ortholog of human MFSD8 in the social amoeba Dictyostelium discoideum and reported its localization to endocytic compartments. In this study, the effects of mfsd8 loss during Dictyostelium growth and multicellular development were further characterized. Dictyostelium mfsd8- cells displayed increased rates of proliferation and pinocytosis in liquid media. During growth, loss of mfsd8 altered lysosomal enzymatic activities and reduced the intracellular and extracellular levels of autocrine proliferation repressor A. mfsd8- cells grown on a lawn of bacteria formed plaques in a shorter period of time compared to WT cells, providing additional support for the enhanced growth of mfsd8- cells. Upon starvation, the aggregation of mfsd8- cells was delayed, and mfsd8- cells formed more mounds that were smaller in size, which may be attributed to the reduced cell-substrate adhesion and altered lysosomal enzymatic activities observed for mfsd8- cells. Following aggregation, tipped mound formation was delayed, however, loss of mfsd8 did not affect the timing of slug/finger and fruiting body formation. Additionally, slug migration was reduced in mfsd8- cells. These aberrant phenotypes, excluding fruiting body formation, were effectively or partially rescued when Mfsd8-GFP was introduced into mfsd8- cells. Overall, these results show that Mfsd8 plays a role in regulating growth and developmental processes in Dictyostelium via lysosomal-associated functions. Author Keywords: CLN7, Dictyostelium discoideum, Lysosomes, MFSD8, Neuronal Ceroid Lipofuscinoses
Shorebird Stopover Ecology and Environmental Change at James Bay, Ontario, Canada
I examined how shorebirds respond to environmental change at a key subarctic migratory bird stopover site, the southwestern coast of James Bay, Ontario, Canada. First, I investigated if the morphology of sandpipers using James Bay during southbound migration has changed compared to 40 years prior. I found shorter, more convex and maneuverable wings for sandpipers in the present-day compared to the historical monitoring period, which supports the hypothesis that wing length change is driven by increases in predation risk. Secondly, I assessed the relationship between migration distance, body condition, and shorebird stopover and migratory decisions. Species that travelled farther distances from James Bay to wintering areas migrated with more characteristics of a time-minimizing migration strategy whereas species that travelled shorter distances migrated with energy minimizing strategies. Body condition impacted length of stay, wind selectivity at departure, groundspeeds, and probability of stopover and detection in North America after departing James Bay. Thirdly, I examined annual variation in dry/wet conditions at James Bay and found that shorebirds had lower body mass in years with moderate drought. In the present-day, drought resulted in lower invertebrate abundance and refuelling rates of shorebirds during stopover, which led to shorter stopover duration for juveniles and a higher probability of stopover outside of James Bay for all groups except white-rumped sandpiper. Finally, I estimated the relative importance of intertidal salt marsh and flat habitats to the diets of small shorebirds and found that semipalmated and white-rumped sandpiper (Calidris pusilla and C. fuscicollis) and semipalmated plover (Charadrius semipalmatus) diets consist of ~ 40 – 75% prey from intertidal marsh habitats, the highest documented in the Western Hemisphere for each species. My research shows that James Bay is of high importance to white-rumped sandpipers, which are unlikely to stop in North America after departing James Bay en route to southern South America. Additionally, intertidal salt marsh habitats (and Diptera larvae) appear particularly important for small shorebirds in the region. My thesis shows that changing environmental conditions, such as droughts, can affect shorebird refuelling and stopover strategies. Author Keywords: body condition, diet, environmental change, migration, ornithology, stopover ecology
role of Cln5 in autophagy, using a Dictyostelium discoideum model of Batten disease
This thesis investigated the role of the neuronal ceroid lipofuscinosis protein, Cln5, during autophagy. This was accomplished by performing well-established assays in a Dictyostelium cln5 knockout model (cln5-). In this study, cln5- cells displayed a reduced maximum cell density during growth and impaired cell proliferation in autophagy-stimulating media. cln5- cells had an increased number of autophagic puncta (autophagosomes and lysosomes), suggesting that autophagy is induced when cln5 is absent. cln5- cells displayed increased amounts of ubiquitin-positive proteins but had no change in proteasome protein abundance. During the development of cln5- cells, fruiting bodies developed precociously and cln5- slug size was reduced. Lastly, when cln5- cells were developed on water agar containing ammonium chloride (NH4Cl), a lysosomotropic agent, the formation of multicellular structures was impaired, and the small slug phenotype was exaggerated. In summary, these results indicate that Cln5 plays a role in autophagy in Dictyostelium. The cellular processes that regulate autophagy in Dictyostelium are similar to those that regulate the process in mammalian cells. Thus, this research provides insight into the undefined pathological mechanism of CLN5 disease and could identify cellular pathways for targeted therapeutics. Author Keywords: Autophagy, Batten disease, Cln5, Dictyostelium discoideum, NCL

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Master of Education
  • (-) = Biology

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/28