Graduate Theses & Dissertations

Development and Use of Passive Samplers for Monitoring Dissolved and Nanoparticulate Silver in the Aquatic Environment
Silver nanoparticles (nAg) are the largest and fastest growing class of nanomaterials, and are a concern when released into aquatic environments even at low μg L-1+). Diffusive gradient in thin films (DGT) with a thiol-modified resin were used to detect labile silver and carbon nanotubes (CNT-sampler) were used to measure nAg. Laboratory uptake experiments in lake water provided an Ag+ DGT diffusion coefficient of 3.09 x 10 -7 cm2s-1 and CNT sampling rates of 24.73, 5.63, 7.31 mL day-1, for Ag+, citrate-nAg and PVP-nAg, respectively. The optimized passive samplers were deployed in mesocosms dosed with nAg. DGT samplers provided estimated Ag+ concentrations ranging from 0.15 to 0.98 μg L-1 and CNT-samplers provided nAg concentrations that closely matched measured concentrations in water filtered at 0.22 μm. Author Keywords: ICP-MS, mesocosms, nanoparticles, nanosilver, passive sampling
Electrochemical versus Chemical Oxidation of Bulky Phenols
Phenolic compounds are used in industry, such as agriculture and biotechnology, and inevitably end up in our environment. These compounds may serve as a phenolic precursor to produce raw materials for a wide range of applications. Chemical oxidation has been the common synthetic pathway to oxidize phenols and related compounds. However, traditional chemical approaches suffer from use of harsh chemicals, waste generation, and lack of reaction selectivity. Electrochemical synthesis has emerged as an alternative method to mitigate common challenges associated with organic synthesis. Herein, electrochemical oxidation of 2,6-diphenylphenol (DPP) and 2,2-dihydroxybiphenol (DHBP) was carried out and compared to traditional chemical oxidation. Contrasted with chemical oxidation, cyclic voltammetry of DPP resulted in a range of products based on the specific potential ranges used, whereas chemical oxidation of DHBP yield a dark-coloured polymeric product. The electrooxidation and chemical oxidation of DPP and DHBP resulted in a solution colour change, indicative of the formation of new, but different products monitored by UV-vis, and characterized by nuclear magnetic spectroscopy (NMR), X-ray single crystal diffraction, IR spectroscopy, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS). The data indicate that the synthetic outcomes are dependent on the synthetic methodology employed, and that electrooxidation and chemical oxidation can form products unique to the pathway utilized. Author Keywords: chemoselectivity, electrochemistry, phenols, radical, synthesis

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Chemistry
  • (-) = Master of Science
  • (-) = Analytical chemistry

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/04/17

Degree Discipline

Subject (Topic)