Graduate Theses & Dissertations

Pages

Syrphidae (Diptera) of northern Ontario and Akimiski Island, Nunavut
Syrphids, also known as hover flies (Diptera: Syrphidae) are a diverse and widespread family of flies. Here, I report on their distributions from a previously understudied region, the far north of Ontario, as well as Akimiski Island, Nunavut. I used samples collected through a variety of projects to update known range and provincial records for over a hundred species, bringing into clearer focus the distribution of syrphids throughout this region. I also analysed a previously un-tested trap type for collecting syrphids (Nzi trap), and report on results of DNA analysis for a handful of individuals, which yielded a potential new species. Author Keywords: Diptera, Ontario, range extension, Syrphidae
Habitat selection by sympatric Canada lynx (Lynx canadensis) and bobcat (Lynx rufus)
Range expansion by the bobcat (Lynx rufus) may be contributing to range contraction by the Canada lynx (Lynx canadensis), but interactions between them are not well understood. To investigate the potential for competition, I conducted a literature review of hierarchical habitat selection by these two species. I determined that the lynx and the bobcat select different resources at the first and second orders, and that the fourth order is under-studied compared to higher orders. I therefore conducted a snow-tracking study of fine-scale habitat selection by lynx and bobcat in an area of sympatry in northern Ontario. I found that the two species selected similar resources at the fourth order, but appeared to be allopatric at the level of the home range. These results suggest that competition is unlikely to occur between lynx and bobcat, and other factors should be considered as more probable causes of the lynx range contraction. Author Keywords: Bobcat, Canada lynx, Competition, Habitat selection, Scale, Snow tracking
cascading effects of risk in the wild
Predation risk can elicit a range of responses in prey, but to date little is known about breadth of potential responses that may arise under realistic field conditions and how such responses are linked, leaving a fragmented picture of risk-related consequences on individuals. We increased predation risk in free-ranging snowshoe hares (Lepus americanus) during two consecutive summers by simulating natural chases using a model predator (i.e., domestic dog), and monitored hare stress physiology, energy expenditure, behaviour, condition, and habitat use. We show that higher levels of risk elicited marked changes in physiological stress metrics including sustained high levels of free plasma cortisol which had cascading effects on glucose, and immunology, but not condition. Risk-augmented hares also had lowered daily energy expenditure, spent more time foraging, and decreased rest, vigilance, and travel. It is possible that these alterations allowed risk-exposed hares to increase their condition at the same rate as controls. Additionally, risk-augmented hares selected, had high fidelity to, and were more mobile in structurally dense habitat (i.e., shrubs) which provided them additional cover from predators. They also used more open habitat (i.e., conifer) differently based on locale within the home range, using familiar conifer areas within cores for rest while moving through unfamiliar conifer areas in the periphery. Overall, these findings show that prey can have a multi-faceted, highly plastic response in the face of risk and can mitigate the effects of their stress physiology given the right environmental conditions. Author Keywords: behaviour, condition, daily energy expenditure, predator-prey interactions, snowshoe hare, stress physiology
Effects of Geographic Factors on the Wild Harvest of Large Mammals across North America
While the harvest of mammals is monitored in each jurisdiction across Canada and the USA, there has been no analysis of this wild harvest at a continental scale across North America. The recreational wild harvest of large mammals varies geographically across North America, and I hypothesized that this variation is influenced by both anthropogenic and other environmental factors on the landscape. I tested this hypothesis using annual harvest tallies collected by Conservation Visions Inc. for mammals for each state, provincial, and territorial jurisdiction in Canada and the USA. I built multiple additive models of the harvest, in one harvest year, 2015 – 2016, to test for landscape gradients that explain the variation in harvest levels for seven large mammal species: white-tailed deer (Odocoileus virginianus), black bear (Ursus americanus), bighorn sheep (Ovis canadensis), elk (Cervus canadensis), mule deer (Odocoileus hemionus), pronghorn (Antilocapra americana), and moose (Alces alces). I built these models from a suite of nine putative predictor variables that comprised landcover, human footprint, and evapotranspiration. For all large mammal species except for pronghorn, anthropogenic influence had a positive effect on the wild harvest density, consistent with the idea that the proximity of human populations and roads are important for fostering wild harvest activity by providing hunters access to hunting areas. The harvest of white-tailed deer, elk, and pronghorn were negatively affected by vegetation structure, urbanization, and primary productivity, respectively. Understanding the recreational wild harvest at a broad-spatial scale provides a unique perspective of the North American model of wildlife conservation and spurs future comparative analyses of the wild harvest across spatial scales. Author Keywords: Anthropogenic Influence, Hunting, Large Mammals, Primary Productivity, Vegetation Structure, Wild Harvest
Island Syndrome and Stress Physiology of Mice in the Genus Peromyscus
Biological differences between island and mainland conspecifics have been well studied, but few studies have addressed differences in stress physiology. Stressors, such as predation and competition for resources, cause the release of glucocorticoids (GCs). Characteristics of island wildlife, called “island syndrome”, are attributed to low levels of predators and competitors. I tested the hypothesis that island syndrome includes differences in GC levels between island and mainland rodents using two approaches; first, using white-footed mice (Peromyscus leucopus) from a near-shore archipelago (Thousand Islands, Ontario) and the nearby mainland; second, using study-skins of deer mice (Peromyscus maniculatus) from two archipelagos offshore of Vancouver Island, British Columbia. White-footed mice in the near-shore archipelago did not show characteristics of island syndrome, or changes in GC levels (feces and hair); however deer mice from both archipelagos in British Columbia were heavier and had lower hair GCs for their size than Vancouver Island mice. Author Keywords: Glucocorticoids, Island rule, Island syndrome, Peromyscus, Stress physiology
Reproductive Fitness of Smallmouth Bass (Micropterus dolomieu) Under Heterogeneous Environmental Conditions
Identifying the biotic and abiotic factors that influence individual reproductive fitness under natural conditions is essential for understanding important aspects of a species’ evolutionary biology and ecology, population dynamics, and life-history evolution. Using next generation sequencing technology, I developed five microsatellite multiplex reactions suitable for conducting large scale parentage analysis of smallmouth bass, Micropterus dolomieu, and used molecular pedigree reconstruction techniques to characterize the genetic mating system and mate selection in adult smallmouth bass nesting in Lake Opeongo, Ontario, Canada. I used multivariate spatial autocorrelation analysis to indirectly infer the occurrence and extent of natal philopatry among spawning adults, to assess the strength and direction of sex-bias in natal dispersal patterns, and to evaluate the degree of nest site fidelity and breeding dispersal of spawning adults. I also evaluated how differences in littoral zone water temperature caused by wind-induced seiche events influence the relative reproductive success of spawning adults. Lastly, I provide a synopsis of potential future research aimed at further exploring factors that influence the reproductive fitness of smallmouth bass in Lake Opeongo. This information will contribute to our understanding of the factors regulating smallmouth bass populations, and provide insight into the factors controlling the variance in individual reproductive success and thus recruitment dynamics in this species. Author Keywords: Dispersal, Fitness, Mate selection, Mating systems, Philopatry
Yearly variation in fall movements of adult female American black bears (Ursus americanus) in central Ontario, Canada
I investigated site fidelity and habitat selection of American black bears (Ursus americanus) from 15 GPS-collared adult females in central Ontario, Canada over nine years. I used generalized linear mixed models to determine the factors affecting between-year variation in fall fidelity and the habitat selection in movement paths. I assessed second and third-order habitat preference by female bears moving between seasonal home ranges. I found that 66% of bears returned to the same fall area between years, expressed as range overlap, influenced negatively by whether they had cubs. When moving between seasonal ranges, bears selected for mixedwood, hardwood and wetlands cover but selected ridge tops over other habitat features at both scales. With increases in climatic uncertainty and habitat fragmentation, these results emphasize the need for wildlife management to consider annual variation in seasonal movements and habitat use by wide-ranging, opportunistic animals. Author Keywords: American black bear, Habitat Selection, Logistic Regression, Site Fidelity
Detection of four at-risk freshwater pearly mussel species (Bivalvia
Environmental DNA (eDNA) detection uses species-specific markers to screen DNA from bulk samples, such as water, to infer species presence. This study involved the development and testing of species-specific markers for four freshwater pearly mussels (Unionidae). The markers were applied to water samples from intensively sampled mussel monitoring sites to compare species detections from eDNA with established sampling method detections. Target species were detected using eDNA at all sites where they had previously been detected by quadrat sampling. This paired design demonstrated that eDNA detection was at least as sensitive as quadrat sampling and that high species specificity can be achieved even when designing against many sympatric unionids. Detection failures can impede species conservation efforts and occupancy estimates; eDNA sampling could improve our knowledge of species distributions and site occupancy through increased sampling sensitivity and coverage. Author Keywords: conservation genetics, cytochrome oxidase subunit I (COI), environmental DNA (eDNA), quantitative PCR (qPCR), species at risk (SAR)
Responses of Primary Producers and Grazers to Silver Nanoparticle Exposure
The increasing production and use of silver nanoparticles (AgNPs) raise concerns on environmental exposure and impact. A large scale in situ enclosure study was conducted at the Experimental Lakes Area to determine the effect of AgNPs on natural phytoplankton and zooplankton communities. This study investigated AgNPs of varying concentrations (4, 16 and 64 μg/L), dosing regimens (chronic vs. pulse), and capping agents (poly-vinyl pyrrolidone vs. citrate). Phytoplankton communities were influenced only by the natural limnological properties of the system signifying tolerance to AgNPs. Zooplankton community structure significantly changed with AgNP concentration and dosing regimen indicating AgNP sensitivity. A microcosm study investigating the effect of AgNPs and phosphorus-dosed periphyton before and after grazing by two benthic invertebrate species (snails and caddisfly larvae) showed reduced periphyton stoichiometry with AgNP exposure. Grazers foraged less on silver dosed periphyton indicating a preferential choice in food quality. Phosphorus reduced the detrimental effects of AgNPs across all conditions. These studies verify the need for in situ experimental designs to fully investigate the effects of AgNPs and their interaction with environmental factors, multiple species assemblages, and across trophic levels. Author Keywords: benthic invertebrate, Experimental Lakes Area, periphyton, phytoplankton, silver nanoparticles, zooplankton
Conservation Genetics of Woodland Caribou in the Central Boreal Forest of Canada
Maintaining functional connectivity among wildlife populations is important to ensure genetic diversity and evolutionary potential of declining populations, particularly when managing species at risk. The Boreal Designatable Unit (DU) of woodland caribou (Rangifer tarandus caribou) in Ontario, Manitoba, and Saskatchewan has declined in southern portions of the range because of increased human activities and has been identified as 'threatened' by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). In this dissertation, I used ten microsatellite DNA markers primarily from winter-collected fecal samples to delineate genetic structure of boreal caribou in declining portions of the range and increase understanding of the potential influence of the non-threatened Eastern Migratory DU of woodland caribou on genetic differentiation. Eastern migratory caribou are characterized by large home ranges compared to boreal caribou and migrate seasonally into portions of the Boreal DU range. A regional- and local-scale analysis using the spatial Bayesian clustering algorithm in program TESS delineated four regional clusters and 11 local clusters, with the majority of local clusters occurring along the southern periphery of the range. One of those clusters in Ontario corresponded spatially with the seasonal overlap of boreal and eastern migratory caribou and was characterized by substantial admixture, suggesting that the two DUs could be interbreeding. Next, I decoupled the impacts of historical and contemporary processes on genetic structure and found that historical processes were an important factor contributing to genetic differentiation, which may be a result of historical patterns of isolation by distance or different ancestry. Moreover, I found evidence of introgression from a currently unsampled population in northern Ontario, presumably barren-ground caribou (R. t. groenlandicus). Finally, because our analysis suggested recent processes were also responsible for genetic structure, I used a landscape genetics analysis to identify factors affecting contemporary genetic structure. Water bodies, anthropogenic disturbance, and mobility differences between the two DUs were important factors describing caribou genetic differentiation. This study provides insights on where conservation and management of caribou herds should be prioritized in threatened portions of the boreal caribou range and may have implications for future delineation of evolutionarily significant units. Author Keywords: boreal forest, genetic structure, landscape genetics, microsatellite DNA, Rangifer tarandus, woodland caribou
Factors affecting road mortality of reptiles and amphibians on the Bruce Peninsula
Road mortality is one of the leading causes of global population declines in reptiles and amphibians. Stemming losses from reptile and amphibian road mortality is a conservation priority and mitigation is a key recovery measure. I developed a model of road mortalities relative to non-­‐mortalities, based on predictors varying across space (road surface type, traffic volume, speed limit, distance to wetland) and time (weather conditions, traffic volume). Herpetofauna road mortalities were recorded during daily bicycle and vehicle surveys to investigate the impact of roads on reptiles and amphibians within the Bruce Peninsula, Ontario in 2012 and 2013. A total of 2541 observations of herpetofauna on roads were recorded, 79% of which were dead. The major factor influencing turtle road mortality was proximity to the nearest wetland and dates early in the season (spring). For the Massasauga, high daily temperatures and low daily precipitation were associated with road mortality. The major factors driving colubrid snake mortality were also high daily temperature, low daily precipitation, as well as low speeds and paved roads. Frog and toad mortality was driven by proximity to wetland and late summer dates. These models will increase our understanding of factors affecting road losses of herpetofauna and serve as a basis for planned, experimental mitigation within the Bruce Peninsula. Author Keywords: amphibians, hotspot, mitigation, reptiles, road ecology, road mortality
Adaptive Genetic Markers Reveal the Biological Significance and Evolutionary History of Woodland Caribou (Rangifer tarandus caribou) Ecotypes
Migratory and sedentary ecotypes are phenotypic distinctions of woodland caribou. I explored whether I could distinguish between these ecotypes in Manitoba and Ontario using genetic signatures of adaptive differentiation. I anticipated that signatures of selection would indicate genetic structure and permit ecotype assignment of individuals. Cytochrome-b, a functional portion of the mitochondrial genome, was tested for evidence of adaptation using Tajima’s D and by comparing variations in protein physiology. Woodland caribou ecotypes were compared for evidence of contemporary adaptive differentiation in relation to mitochondrial lineages. Trinucleotide repeats were also tested for differential selection between ecotypes and used to assign individuals to genetic clusters. Evidence of adaptive variation in the mitochondrial genome suggests woodland caribou ecotypes of Manitoba and Ontario corresponded with an abundance of functional variation. Woodland caribou ecotypes coincide with genetic clusters, and there is evidence of adaptive differentiation between migratory caribou and certain sedentary populations. Previous studies have not described adaptive variation in caribou using the methods applied in this study. Adaptive differences between caribou ecotypes suggest selection may contribute to the persistence of ecotypes and provides new genetic tools for population assessment. Author Keywords: Adaptation, Cytochrome-B, Ecotype, RANGIFER TARANDUS CARIBOU, Selection, TRINUCLEOTIDE REPEAT

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Schaefer
  • (-) ≠ Patterson
  • (-) ≠ Nol

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/12/11

Author Last Name

Show more

Last Name (Other)

Show more

Degree Discipline

Subject (Topic)