Graduate Theses & Dissertations

Pages

Hybridization dynamics in cattails (Typha spp.,) in northeastern North America
Interspecific hybridization is an important evolutionary process which can contribute to the invasiveness of species complexes. In this dissertation I used the hybridizing species complex of cattails (Typha spp., Typhaceae) to explore some of the processes that could contribute to hybridization rates. Cattails in northeastern North America comprise the native T. latifolia, the non-native T. angustifolia, and their fertile hybrid, T. × glauca. First, I examined whether these taxa segregate by water depth as habitat segregation may be associated with lower incidence of hybridization. I found that these taxa occupy similar water depths and therefore that habitat segregation by water depth does not promote mating isolation among these taxa. I then compared pollen dispersal patterns between progenitor species as pollen dispersal can also influence rates of hybrid formation. Each progenitor exhibits localized pollen dispersal, and the maternal parent of first generation hybrids captures more conspecific than heterospecific pollen; both of which should lead to reduced hybrid formation. I then conducted controlled crosses using all three Typha taxa to quantify hybrid fertility and to parameterize a fertility model to predict how mating compatibilities should affect the composition of cattail stands. I found that highly asymmetric formation of hybrids and backcrosses and reduced hybrid fertility should favour the maintenance of T. latifolia under certain conditions. Finally, I used a population genetics approach to characterize genetic diversity and structure of Typha in northeastern North America to determine the extent to which broad-scale processes such as gene flow influence site-level processes. I concluded that hybrids are most often created within sites or introduced in small numbers rather than exhibiting broad-scale dispersal. This suggests that local processes are more important drivers of hybrid success than landscape-scale processes which would be expected to limit the spread of the hybrid. Though my findings indicate some barriers to hybridization in these Typha taxa, hybrid cattail dominates much of northeastern North America. My results therefore show that incomplete barriers to hybridization may not be sufficient to prevent the continued dominance of hybrids and that active management of invasive hybrids may be required to limit their spread. Author Keywords: fertility model, genetic structure, Hybridization, invasive species, niche segregation, pollen dispersal
Tests of the Invasional Meltdown Hypothesis in invasive herbaceous plant species in southern Ontario
According to the Invasional Meltdown Hypothesis (IMH), invasive species may interact in their introduced range and facilitate future invasions. This study investigated the possibility that Alliaria petiolata, an invasive allelopathic herbaceous plant in Ontario, is facilitating invasions by additional alien species. Two allelopathic focal species were chosen for this study: the native Solidago canadensis and the invasive A. petiolata. Field surveys in southern Ontario that quantified plant biodiversity in plots that included one or both focal species revealed no support for the IMH, although fewer species co-existed with A. petiolata than with S. canadensis. A year-long recruitment experiment in Peterborough, Ontario, also produced results inconsistent with the IMH, although did provide some evidence that A. petiolata limited recruitment of other species. These results collectively show negative impacts on regional biodiversity by A. petiolata, even in the absence of an invasional meltdown. Author Keywords: allelopathy, Alliaria petiolata, co-occurrence surveys, invasional meltdown hypothesis, invasive species, Solidago canadensis
Population Genetics and Scarification Requirements of Gymnocladus dioicus
The Kentucky coffee tree (Gymnocladus dioicus) is an endangered tree species native to the American Midwest and Southwestern Ontario. Significant habitat loss and fragmentation due to agricultural, industrial and urban development has caused gradual decline across its native range. The aims of this study were to investigate: (1) patterns of genetic diversity and, (2) genetic differentiation (3) relative levels of sexual vs. clonal reproduction, and (4) potential for reduced genetic diversity at range edge for wild G. dioicus populations. An analysis of variation at nine microsatellite loci from populations in the core of the species distribution in the U.S.A. and 4 regions of Southwestern Ontario indicated that G. dioicus has remarkably high genetic similarity across its range (average pairwise FST= 0.05). Germination trials revealed that the seed coats require highly invasive treatments (e.g. 17.93 mol/L H2SO4) to facilitate imbibition, with negligible germination observed in treatments meant to emulate prevailing conditions in natural populations. Low levels of sexual reproduction, high genetic similarity, and habitat degradation are issues that exist across the entire native range of G. dioicus. Author Keywords:
Using environmental DNA (eDNA) metabarcoding to assess aquatic plant communities
Environmental DNA (eDNA) metabarcoding targets sequences with interspecific variation that can be amplified using universal primers allowing simultaneous detection of multiple species from environmental samples. I developed novel primers for three barcodes commonly used to identify plant species, and compared amplification success for aquatic plant DNA against pre-existing primers. Control eDNA samples of 45 plant species showed that species-level identification was highest for novel matK and preexisting ITS2 primers (42% each); remaining primers each identified between 24% and 33% of species. Novel matK, rbcL, and pre-existing ITS2 primers combined identified 88% of aquatic species. The novel matK primers identified the largest number of species from eDNA collected from the Black River, Ontario; 21 aquatic plant species were identified using all primers. This study showed that eDNA metabarcoding allows for simultaneous detection of aquatic plants including invasive species and species-at-risk, thereby providing a biodiversity assessment tool with a variety of applications. Author Keywords: aquatic plants, biodiversity, bioinformatics, environmental DNA (eDNA), high-throughput sequencing, metabarcoding
De novo transcriptome assembly, functional annotation, and SNP discovery in North American flying squirrels (genus Glaucomys)
Introgressive hybridization between northern (Glaucomys sabrinus) and southern flying squirrels (G. volans) has been observed in some areas of Canada and the USA. However, existing molecular markers lack the resolution to discriminate late-generation introgressants and describe the extent to which hybridization influences the Glaucomys gene pool. I report the first North American flying squirrel (genus Glaucomys) functionally annotated de novo transcriptome assembly with a set of 146,621 high-quality, annotated putative species-diagnostic SNP markers. RNA-sequences were obtained from two northern flying squirrels and two southern flying squirrels sampled from Ontario, Canada. I reconstructed 702,228 Glaucomys transcripts using 193,323,120 sequence read-pairs, and captured sequence homologies, protein domains, and gene function classifications. These genomic resources can be used to increase the resolution of molecular techniques used to examine the dynamics of the Glaucomys hybrid zone. Author Keywords: annotation, de novo transcriptome, flying squirrels, high-throughput sequencing, hybridization, single nucleotide polymorphisms
Ground-truthing effective population size estimators using long-term population data from inland salmonid populations
Effective population size (Ne) is a foundational concept in conservation biology, in part due to its relationship to the adaptive potential of populations. Although Ne is often estimated for wild populations, it is rarely calibrated against actual population estimates (Nc) other than to produce Ne/Nc ratios. This project used demographic and genetic data for from two intensively-studied populations of lake trout (Salvelinus namaycush) in Ontario’s Experimental Lake Area (ELA) as baseline data for evaluating the performance of multiple Ne estimators. Several temporal and single-time (point) genetic methods of estimating Ne were compared against demographic Ne estimates and known population data, as well as variation and consistency within and among Ne estimators. Changes in genetic Ne estimates over time were also compared to changes in demographic structure and fluctuating census estimates, including the effect of an experimentally manipulated population bottleneck on demographic and genetic Ne estimates during population reduction and recovery. Sampling years that included the most pre-, during and post-bottleneck data revealed the lowest estimates using temporal estimators (Ne = 16 to 18) despite pre- and post-bottleneck census estimates of 591 and 565. Estimation of Ne had increasingly tighter confidence intervals as sample sizes approached the actual number of breeding individuals in each population. Performance differences among the tested estimators highlight their potential biases and reliance on different assumptions, illustrating their potential value and caveats for assessing adaptive potential of wild populations. Author Keywords: Effective Population Size, Experimental Lakes Area, Fish Population Assessment, Lake Trout, Population Demographics, Population Genetics
Enhancing forensic entomology applications
The purpose of this thesis is to enhance forensic entomology applications through identifications and ecological research with samples collected in collaboration with the OPP and RCMP across Canada. For this, we focus on blow flies (Diptera: Calliphoridae) and present data collected from 2011-2013 from different terrestrial habitats to analyze morphology and species composition. Specifically, these data were used to: 1) enhance and simplify morphological identifications of two commonly caught forensically relevant species; Phormia regina and Protophormia terraenovae, using their frons-width to head-width ratio as an additional identifying feature where we found distinct measurements between species, and 2) to assess habitat specificity for urban and rural landscapes, and the scale of influence on species composition when comparing urban and rural habitats across all locations surveyed where we found an effect of urban habitat on blow fly species composition. These data help refine current forensic entomology applications by adding to the growing knowledge of distinguishing morphological features, and our understanding of habitat use by Canada’s blow fly species which may be used by other researchers or forensic practitioners. Author Keywords: Calliphoridae, Ecology, Forensic Entomology, Forensic Science, Morphology, Urban
Biology and Management of Stratiotes Aloides in the Trent River, Ontario
Invasive aquatic plants can create negative ecological, economic and social impacts when they displace local vegetation, interfere with shipping and navigation and inhibit water-based recreational activities. In 2008, the first North American occurrence of the invasive plant Stratiotes aloides (Water soldier) was identified in the Trent River, Ontario. This research measured offset photosynthesis and turion germination to determine the light compensation point (5.2-5.4m) and maximum depth of colonization (4-6m) for S. aloides propagules using in situ incubations and controlled growth experiments. The effects of spring and fall chemical (Diquat) and physical (hand raking) treatments on S. aloides biomass, local macrophyte recovery and community dynamics in the Trent River were also measured. The target of a 75% minimum reduction in S. aloides biomass was not attained using any of the treatment methods and no perceivable recovery of the local plant community was observed. Significant S. aloides regrowth was recorded for both treatment methods regardless of application timing. Author Keywords: herbicide, invasive species, macrophyte, photosynthesis, propagule
Evaluating Environmental DNA (eDNA) Detection of Invasive Water Soldier (Stratiotes Aloides)
In 2008, the first North American water soldier (Stratiotes aloides) population was discovered in the Trent River, Ontario. Water soldier is an invasive aquatic plant with sharp, serrated leaves that has the potential to spread rapidly through dispersed vegetative fragments. Although it is too late to prevent water soldier establishment in the Trent River, its local distribution remains limited. In this study, environmental DNA (eDNA) was explored as a potential tool for early detection of water soldier. Species-specific markers were designed from chloroplast DNA regions matK and rbcL, and a qPCR assay with rbcL primers yielded the most sensitive detection of water soldier eDNA. Positive detections were obtained from six of 40 sampling locations, of which five were collected in Seymour Lake, an area with large patches of water soldier. As water soldier plants were known to be present at these sites, high eDNA concentrations were expected. The sixth positive detection from Trent Lock 5 (50 km downstream of Lake Seymour) was unexpected as it was obtained at a site with no water soldier sightings. This is one of the first studies to demonstrate the effectiveness of eDNA detection from aquatic plants. Author Keywords: aquatic plant, eDNA, environmental DNA, invasive species, Stratiotes aloides, water soldier
Detection of four at-risk freshwater pearly mussel species (Bivalvia
Environmental DNA (eDNA) detection uses species-specific markers to screen DNA from bulk samples, such as water, to infer species presence. This study involved the development and testing of species-specific markers for four freshwater pearly mussels (Unionidae). The markers were applied to water samples from intensively sampled mussel monitoring sites to compare species detections from eDNA with established sampling method detections. Target species were detected using eDNA at all sites where they had previously been detected by quadrat sampling. This paired design demonstrated that eDNA detection was at least as sensitive as quadrat sampling and that high species specificity can be achieved even when designing against many sympatric unionids. Detection failures can impede species conservation efforts and occupancy estimates; eDNA sampling could improve our knowledge of species distributions and site occupancy through increased sampling sensitivity and coverage. Author Keywords: conservation genetics, cytochrome oxidase subunit I (COI), environmental DNA (eDNA), quantitative PCR (qPCR), species at risk (SAR)
Understanding the establishment of Typha spp. in North America using population genetics and common garden studies
There are three cattail (Typha) taxa in Canada: T. latifolia (native), T. angustifolia (introduced), and their hybrid T. x glauca. The latter is invasive in regions around the Laurentian Great Lakes, and I investigated the potential role that commercial suppliers may be playing in the introduction of non-native Typha by comparing genotypes of North American, European, and commercially available plants. I found that Ontario garden centres are importing both hybrids and non-native lineages of T. angustifolia into Canada, but was unable to identify the provenance of T. latifolia. I also investigated the possibility that the hybrid cattail leaf litter shade and leachate influences germination and early growth of the parental species of the hybrids. Using three common garden experiments, I found that T. x glauca leaf litter suppresses germination rates of the three taxa. In the early seedling growth experiment, plant performance varied by taxa, and for the competition experiment there were no intra- or interspecific competition or treatment effects on the performance of plants. Overall, my research identified a potential mechanism allowing T. x glauca to dominate wetlands, and also shows that non-native lineages are being introduced into Canada through commercial trade Author Keywords: Competition, Germination, Non-native lineages, Plant nurseries, Seedling Growth, Typha spp.
Development of genetic profiles for paternity analysis and individual identification of the North Atlantic right whale (Eubalaena glacialis)
The endangered North Atlantic right whale (Eubalaena glacialis) has been internationally protected from whaling since 1935 but recovery has been slow compared to the southern right whale (Eubalaena australis) due to anthropogenic mortalities and poor reproduction. Prey availability, genetic variability, and alleles of genes associated with reproductive dysfunction have been hypothesized to contribute to low calf production. The North Atlantic Right Whale DNA Bank and Database contains 1168 samples from 603 individuals. I added 115 new genetic profiles to the database which now contains profiles for 81% of individuals alive since 1980. Paternity assignments using these profiles resulted in 62% of sampled calves being assigned a father and only 38% of candidate males being assigned a paternity. This may suggest false exclusion due to genotyping errors or the existence of an unknown group of males. The use of the DNA database allowed for the identification of 10 deceased individuals which has implications for identifying cause of death and reducing mortalities. However, genetic identification is dependent on the time of post-mortem sample collection which influences DNA quantity and quality. An assessment for variations in methylenetetrahydrofolate reductase, a candidate gene associated with reproductive dysfunction, revealed six females heterozygous for a synonymous A/T variant in exon four which may influence reproductive success through changes in enzyme production, conformation or activity. Author Keywords: Eubalaena glacialis, Forensic Identification, Genetic Profiling, North Atlantic Right Whale, Paternity, Reproductive Dysfunction

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Freeland

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/10/16

Author Last Name

Show more

Last Name (Other)

Show more

Degree Discipline