Graduate Theses & Dissertations

Pages

Indirect Effects of Hyperabundant Geese on Sympatric-Nesting Shorebirds
Rising populations of Lesser Snow and Ross’ geese (hereafter collectively referred to as light geese) breeding in the North American Arctic have caused significant environmental change that may be affecting some populations of nesting shorebirds, which in contrast to geese, have declined dramatically. In this thesis I examine the indirect effects of light geese on sympatric-nesting shorebirds. I first conduct a literature review of the effects of light geese on northern wildlife and outline multiple mechanisms in which geese may affect shorebirds in particular. Using bird survey data collected in plots situated across the Canadian Arctic from 1999 to 2016, I then identify spatial effects of light goose colonies on shorebird, passerine, and generalist predator densities. The densities of cover- nesting shorebirds and passerines were depressed near goose colonies while the densities of open-nesting shorebirds were less so. Next, using habitat data collected at random sites and shorebird nest sites situated at increasing distances from a goose colony on Southampton Island, Nunavut, I outline the effects of geese on shorebird nest site selection. I found that the availability of sedge meadow and amount of lateral concealment increased as a function of distance from goose colony; cover-nesting shorebirds selecting nest sites with less concealment and sedge meadow near the colony. Then, to characterize spatial effects of light geese on predators and risk of predation I used time-lapse cameras and artificial shorebird nests placed at increasing distances from the goose colony. Activity indices of gulls, jaegers, and foxes were all negatively correlated with distance from the goose colony while the reverse was true for artificial nest survival probability. Finally, I relate changes in ground cover to goose use and link these changes to variation in invertebrate communities. I then use DNA metabarcoding to characterize the diet of six shorebird species across study sites and identify inter-site variation in the biomass of dominant shorebird prey items. Prey item biomass was elevated at the two study sites near the goose colony potentially indicating an enhancing effect of goose fecal deposition. Overall, I show that light geese interact with shorebirds in multiple ways and negatively affect their habitat availability, nest site selection, and risk of predation, effects that likely outweigh the positive effects of enhanced prey availability. Author Keywords:
Effect of Nitrosative Stress on Heme Protein Expression and Localization in Giardia Intestinalis
The parasitic protist Giardia intestinalis has five heme proteins: a flavohemoglobin and several isotypes of cytochrome b5. While the flavohemoglobin has a role in counteracting nitric oxide, the functions of the cytochromes (gCYTb5s) are unknown. In this study, the protein level and cellular localization of three gCYTB5 isotypes (gCYTb5-I, II and III) and flavohemoglobin were examined in Giardia trophozoites exposed to three nitrosative stressors at two different concentrations: nitrite (20 mM, 0.5 mM); GSNO (2 mM, 0.25 mM) and DETA-NONOate (2 mM, 0.05 mM). An increase in protein levels was observed for gCYTb5-II with all stressors at both concentrations. However, the effects of these nitrosative stressors on gCYTb5-I and III were inconclusive due to the variation among the replicates and the poor detection of gCYTb5- III on western blots. The protein level of the flavohemoglobin also increased in response to the three stressors at the low concentrations of stressors that were tested. Only the cellular localization of gCYTb5-I changed in response to nitrosative stress, where it moved from the nucleolus to the nucleus and cytoplasm. This response was extremely sensitive and occurred at the lower doses of the three stressors, suggesting that gCYTb5-I may be involved in a nucleolar- based stress response. Author Keywords:
Contemporary adaptive shifts in the physiology and life history of Pumpkinseed (Lepomis gibbosus) introduced into a warm climate
Contemporary evolution has the potential to help limit the biological impact of rapidly changing climates, however it remains unclear whether wild populations can respond quickly enough for such adaptations to be effective. In this thesis, I used the introduction of native North American Pumpkinseed (Lepomis gibbosus) into the milder climate of Europe over 140 years ago, as a 'natural' experiment to test for contemporary evolution to a change in climate in wild populations. In 2008, four outdoor pond colonies were established in central Ontario using adult Pumpkinseed from two native Canadian populations, and two non-native populations from northeastern Spain. By raising native and non-native Pumpkinseed within a common environment, this design minimized the impact of phenotypic plasticity on differential trait expression, and allowed me to interpret differences in the phenotype among pond-reared Pumpkinseed as evidence of genetic differences among populations. I demonstrated that Canadian and Spanish Pumpkinseed have similar thermal physiology except when acclimated to seasonally warm temperatures; trait differences are consistent with Spanish Pumpkinseed being better adapted to a warmer climate. Populations also had similar overwintering ecology, however some differences, such as higher survival under starvation conditions and greater energetic benefits associated with winter feeding, indicated that Canadian populations are better adapted to harsh winter conditions typical of the native range. Finally, I determined that the relatively fast life history expressed in wild European Pumpkinseed is largely driven by plastic responses to the local environment; however, the higher reproductive investment by European populations has a genetic basis. Most climate change research considers taxa that are expected to be negatively impacted by warming: my research demonstrates that even warm-tolerant taxa that are unlikely to experience strong climatic selective forces can respond to a warming environment through evolutionary changes. The potential for adaptive contemporary evolution in warm-tolerant taxa should be taken into account when predicting future ecosystem effects of climate change, and when planning management strategies for species introduced into novel climates. Author Keywords: climate change, contemporary evolution, fish, non-native species, thermal biology, winter ecology
Molecular Composition of Dissolved Organic Matter Controls Metal Speciation and Microbial Uptake
Aquatic contaminant mobility and biological availability is strongly governed by the complexation of organic and inorganic ligands. Dissolved organic matter (DOM) is a complex, heterogeneous mixture of organic acids, amino acids, lipids, carbohydrates and polyphenols that vary in composition and can complex to dissolved metals thereby altering their fate in aquatic systems. The research conducted in this doctoral dissertation addresses 1) how DOM composition differs between phytoplankton taxa and 2) how DOM composition affects metal speciation and its subsequent microbial bioavailability in laboratory and field conditions. To accomplish this, a series of analytical methods were developed and applied to quantify thiols, sulphur containing DOM moieties, and the molecular composition of DOM. The works presented in this thesis represents one of the first comprehensive and multipronged analyses of the impact of phytoplankton metabolite exudates on microbial metal bioavailability. This dissertation demonstrated the analytical versatility of high-resolution mass spectrometry as a tool for compound specific information, as well as having the capabilities to obtain speciation information of organometallic complexes. The work presented in this PhD strengthens the understanding compositional differences of both autochthonous and allochthonous DOM and their effects on metal biogeochemistry. Author Keywords: Dissolved Organic Matter, Mercury, Metal Accumulation, Phytoplankton, Spring Melts, Thiol
An Investigation of Rare Earth Element Patterns and an Application of Using Zn and Cd Isotope Ratios in Oysters to Identify Contamination Sources in an Estuary in Southern China
Environmental monitoring and investigation of metal biogeochemical cycling has been carried out in the Pearl River Estuary (PRE), an important and complex system in Southern China. In this study, rare earth element (REE) patterns as well as isotope ratios (i.e., Zn and Cd) were evaluated as tools to identify contamination sources in environmental compartments (i.e., water and suspended particles (SP)) as well as in oysters collected from estuarine sites. Results show elevated concentrations (also called anomalies) of Pr, Nd, Dy and Ho, relative to other REE elements, in water samples, potentially from REE recycling and other industrialized activities in this area. Unlike water samples, no REE anomalies were found in SP or oysters, suggesting that the dominate REE uptake pathway in oysters is from particles. Secondly, site to site variations in Zn isotope ratios were found in water and SP, showing the complexity of the source inputs in this area. Also, in estuarine locations, larger spatially differences in Zn isotope ratios were found in water collected in wet season than those in dry season, which may due to mixing of different source inputs under the water circulations in different seasons. A series of laboratory experiments were conducted during which changes in Zn isotope ratios were measured during uptake under varying salinity and Zn concentrations and during depuration. Neither in vivo Zn transportation among the various tissues within the oysters nor water exposure conditions (i.e., different salinities or Zn concentrations) caused Zn isotopic fractionation in the oysters. Cd and Zn isotope ratios were also determined in oysters obtained from the PRE. Large variations in Cd and Zn isotope ratios suggest that oysters were receiving contaminants from different input sources within the PRE. A consistent difference (approximately 0.67‰) was observed for Zn isotope ratios in oysters collected from the east side of the PRE compared to those from sampling locations on the western side of the PRE, suggesting different Zn sources in these two areas. Ultimately, by combining biogeochemistry with physiology, this study represents a first attempt to assess pollution status, monitor contaminants using oysters and model/identify contamination sources using both REEs and metal isotope ratios. Author Keywords:
Characterization of Synthetic and Natural Se8 and Related SenSm Compounds by Gas Chromatography-Mass Spectrometry
Elemental selenium has been extensively quantitatively measured in sediments; however, its physical composition is largely unknown, despite it being the dominant selenium species in some reducing environments. Here, for the first time, it is shown that small, cyclic selenium compounds can account for a quantitatively-relevant fraction of the total elemental selenium present. A new method was developed to analyze for cyclooctaselenium (Se8) in both synthetic samples and selenium-impacted sediments. Despite some analytical limitations, this gas chromatography-mass spectrometry (GC-MS) method is the first GC-MS method developed to identify and quantify Se8 in sediments. Once this method was established, it was then applied to more complex systems: first, the identification of compounds in mixed selenium-sulfur melt solutions, and then the determination of SenSm in selenium-impacted sediments. Despite complications arising from pronounced fragmentation in the ion source, assignment of definitive molecular formulae to chromatographically-resolved peaks was possible for five compounds. Developing a fully quantitative method to obtain elemental ratio information can aid in the assignment of molecular formulae to chromatographically-resolved SeS-containing chromatographic peaks. Coupling the existing gas chromatography method to an inductively coupled plasma-mass spectrometer (ICP-MS) system should accomplish this. However, due to a number of complications, this was not completed successfully during the duration of this thesis project. High detection limits for sulfur, retention time discrepancies, and inconsistent injection results between the GC-MS and GC-ICP-MS system led to difficulties in comparing results between both analytical methods. Despite these limitations, GC-ICP-MS remains the most promising method for the identification and quantification of SenSm compounds in synthetic melt mixtures and selenium impacted sediments. Author Keywords: gas chromatography-mass spectrometry, sediments, selenium
Characterization of a Zn(II)2Cys6 transcription factor in Ustilago maydis and its role in pathogenesis
Ustilago maydis (D.C.) Corda is a biotrophic pathogen that secretes effectors to establish and maintain a relationship with its host, Zea mays. In this pathosystem, the molecular function of effectors is well-studied, but the regulation of effector gene expression remains largely unknown. This study characterized Zfp1, a putative U. maydis Zn(II)2Cys6 transcription factor, as a modulator of effector gene expression. The amino acid sequence of Zfp1 indicated the presence of a GAL4-like zinc binuclear cluster as well as a fungal specific transcription factor domain. Nuclear localization was confirmed by tagging Zfp1 with enhanced green fluorescent protein. Deletion of zfp1 resulted in attenuated hyphal growth, reduced infection frequency, an arrest in pathogenic development, and decreased anthocyanin production. This phenotype can be attributed to the altered transcript levels of genes encoding predicted and confirmed U. maydis effectors in the zfp1 deletion strain during pathogenic growth. Complementation of zfp1 deletion strain with tin2, an effector involved in anthocyanin induction, suggested this effector is downstream of Zfp1 and its expression is influenced by this transcription factor during in planta growth. When wild-type zfp1 was ectopically inserted in the zfp1 deletion strain, pathogenesis and virulence were partially restored. This, coupled with zfp1 over-expression strains having a similar phenotype as the deletion strains, suggested Zfp1 may interact with other proteins for full function. These findings show that Zfp1, in conjunction with one or more binding partners, contributes to U. maydis pathogenesis, virulence, and anthocyanin production through the regulation of effector gene expression. Author Keywords: effector, pathogenesis, transcription factor, Ustilago maydis, Zea mays, zinc finger
Effects of Silver Nanoparticles on Lower Trophic Levels in Aquatic Ecosystems
Due to their effective antibacterial and antifungal properties, silver nanoparticles (AgNPs) have quickly become the most commonly used nanomaterial, with applications in industry, medicine and consumer products. This increased use of AgNPs over the past decade will inevitably result in an elevated release of nanoparticles into the environment, highlighting the importance of assessing the environmental impacts of these nanomaterials on aquatic ecosystems. Although numerous laboratory studies have already reported on the negative effects of AgNPs to freshwater organisms, only a handful of studies have investigated the impacts of environmentally relevant levels of AgNPs on whole communities under natural conditions. This thesis examines the effects of chronic AgNP exposure on natural freshwater littoral microcrustacean, benthic macroinvertebrate and pelagic zooplankton communities. To assess the responses of these communities to AgNPs, I focused on a solely field-based approach, combining a six-week mesocosm study with a three-year whole lake experiment at the IISD – Experimental Lakes Area (Ontario, Canada). Our mesocosm study tested the effects of AgNP concentration (low, medium and high dose), surface coating (citrate- and polyvinylpyrrolidone [PVP]-coated AgNPs), and type of exposure (chronic and pulsed addition) on benthic macroinvertebrates in fine and stony sediments. Relative abundances of metal-tolerant Chironomidae in fine sediments were highest in high dose PVP-AgNP treatments; however, no negative effects of AgNP exposure were seen on biodiversity metrics or overall community structure throughout the study. I observed similar results within the whole lake study that incorporated a long-term addition of low levels of AgNPs to an experimental lake. Mixed-effects models and multivariate methods revealed a decline in all species of the littoral microcrustacean family Chydoridae in the final year of the study within our experimental lake, suggesting that this taxon may be sensitive to AgNP exposure; however, these effects were fairly subtle and were not reflected in the overall composition of littoral communities. No other negative effects of AgNPs were observed on the pelagic zooplankton or benthic macroinvertebrate communities. My results demonstrate that environmentally relevant levels of AgNPs have little impact on natural freshwater microcrustacean and benthic macroinvertebrate communities. Instead, biodiversity metrics and community structure are primarily influenced by seasonal dynamics and nutrient concentrations across both lakes. This thesis highlights the importance of incorporating environmental conditions and the natural variability of communities when examining the potential risks posed by the release of AgNPs into the environment, as simplistic laboratory bioassays may not provide an adequate assessment of the long-term impacts of AgNPs on freshwater systems. Author Keywords: Benthic macroinvertebrates, IISD - Experimental Lakes Area, Littoral microcrustaceans, Silver nanoparticles, Whole lake experiment, Zooplankton
cascading effects of risk in the wild
Predation risk can elicit a range of responses in prey, but to date little is known about breadth of potential responses that may arise under realistic field conditions and how such responses are linked, leaving a fragmented picture of risk-related consequences on individuals. We increased predation risk in free-ranging snowshoe hares (Lepus americanus) during two consecutive summers by simulating natural chases using a model predator (i.e., domestic dog), and monitored hare stress physiology, energy expenditure, behaviour, condition, and habitat use. We show that higher levels of risk elicited marked changes in physiological stress metrics including sustained high levels of free plasma cortisol which had cascading effects on glucose, and immunology, but not condition. Risk-augmented hares also had lowered daily energy expenditure, spent more time foraging, and decreased rest, vigilance, and travel. It is possible that these alterations allowed risk-exposed hares to increase their condition at the same rate as controls. Additionally, risk-augmented hares selected, had high fidelity to, and were more mobile in structurally dense habitat (i.e., shrubs) which provided them additional cover from predators. They also used more open habitat (i.e., conifer) differently based on locale within the home range, using familiar conifer areas within cores for rest while moving through unfamiliar conifer areas in the periphery. Overall, these findings show that prey can have a multi-faceted, highly plastic response in the face of risk and can mitigate the effects of their stress physiology given the right environmental conditions. Author Keywords: behaviour, condition, daily energy expenditure, predator-prey interactions, snowshoe hare, stress physiology
Hybridization dynamics in cattails (Typha spp.,) in northeastern North America
Interspecific hybridization is an important evolutionary process which can contribute to the invasiveness of species complexes. In this dissertation I used the hybridizing species complex of cattails (Typha spp., Typhaceae) to explore some of the processes that could contribute to hybridization rates. Cattails in northeastern North America comprise the native T. latifolia, the non-native T. angustifolia, and their fertile hybrid, T. × glauca. First, I examined whether these taxa segregate by water depth as habitat segregation may be associated with lower incidence of hybridization. I found that these taxa occupy similar water depths and therefore that habitat segregation by water depth does not promote mating isolation among these taxa. I then compared pollen dispersal patterns between progenitor species as pollen dispersal can also influence rates of hybrid formation. Each progenitor exhibits localized pollen dispersal, and the maternal parent of first generation hybrids captures more conspecific than heterospecific pollen; both of which should lead to reduced hybrid formation. I then conducted controlled crosses using all three Typha taxa to quantify hybrid fertility and to parameterize a fertility model to predict how mating compatibilities should affect the composition of cattail stands. I found that highly asymmetric formation of hybrids and backcrosses and reduced hybrid fertility should favour the maintenance of T. latifolia under certain conditions. Finally, I used a population genetics approach to characterize genetic diversity and structure of Typha in northeastern North America to determine the extent to which broad-scale processes such as gene flow influence site-level processes. I concluded that hybrids are most often created within sites or introduced in small numbers rather than exhibiting broad-scale dispersal. This suggests that local processes are more important drivers of hybrid success than landscape-scale processes which would be expected to limit the spread of the hybrid. Though my findings indicate some barriers to hybridization in these Typha taxa, hybrid cattail dominates much of northeastern North America. My results therefore show that incomplete barriers to hybridization may not be sufficient to prevent the continued dominance of hybrids and that active management of invasive hybrids may be required to limit their spread. Author Keywords: fertility model, genetic structure, Hybridization, invasive species, niche segregation, pollen dispersal
Eco-evolutionary Dynamics in a Commercially Exploited Freshwater Fishery
Fisheries assessment and management approaches have historically focused on individual species over relatively short timeframes. These approaches are being improved upon by considering the potential effects of both broader ecological and evolutionary processes. However, only recently has the question been raised of how ecological and evolutionary processes might interact to further influence fisheries yield and sustainability. My dissertation addresses this gap in our knowledge by investigating the role of eco-evolutionary dynamics in a commercially important lake whitefish fishery in the Laurentian Great Lakes, a system that has undergone substantial ecosystem change. First, I link the timing of large-scale ecological change associated with a species invasion with shifts in key density-dependent relationships that likely reflect declines in the population carrying capacity using a model selection approach. Then, using an individual-based model developed for lake whitefish in the southern main basin of Lake Huron, I demonstrate how ecosystem changes that lower growth and recruitment potential are predicted to reduce population productivity and sustainable harvest rates through demographic and plastic mechanisms. By further incorporating an evolutionary component within an eco-genetic model, I show that ecological conditions also affect evolutionary responses in maturation to harvest by altering selective pressures. Finally, using the same eco-genetic model, I provide a much-needed validation of the robustness of the probabilistic maturation reaction norm (PMRN) approach, an approach that is widely used to assess maturation and infer its evolution, to ecological and evolutionary processes experienced by exploited stocks in the wild. These findings together highlight the important role that ecological conditions play, not only in determining fishery yield and sustainability, but also in shaping evolutionary responses to harvest. Future studies evaluating the relative effects of ecological and evolutionary change and how these processes interact in harvested populations, especially with respect to freshwater versus marine ecosystems, could be especially valuable. Author Keywords: Coregonus clupeaformis, density-dependent growth, fisheries-induced evolution, individual-based eco-genetic model, Lake Huron, stock-recruitment
Habitat Characteristics, Density Patterns and Environmental Niches of Indo-Pacific Humpback Dolphins (Sousa chinensis) of the Pearl River Estuary and Eastern Taiwan Strait
The purpose of this thesis is to quantify the habitat characteristics, density patterns and environmental niches of two groups of Indo-Pacific humpback dolphins: Chinese white dolphins (CWD) of the Pearl River estuary (PRE), and Taiwanese white dolphins (TWD, =Taiwanese humpback dolphin, THD) found in the eastern Taiwan Strait (ETS). Much work has already been done on the habitat use of CWDs in parts of the PRE, so the purpose of my first two chapters was to advance knowledge of the TWD to a comparable level. Chapter 2 contains the first published description of the relatively shallow, inshore, estuarine habitat of the TWD. General environmental characteristics and observed group sizes were consistent with other populations of humpback dolphins, and group sizes were not correlated with the environmental variables measured during surveys. Chapter 3 investigated density patterns of TWDs, finding spatiotemporal heterogeneity across the study area. Humpback dolphin densities fluctuated from year to year, but some parts of the study area were consistently used more than others. Environmental characteristics again did not influence dolphin densities, though more dolphins than expected were sighted in waters adjacent to major land reclamations, which may be related to the location of these areas close to major rivers. In Chapter 4, niches of the TWD and CWDs found in the PRE were compared using species distribution models, which indicated significant niche overlap. This may be due to niche conservatism maintaining similar fundamental niches between the two groups since their historical split >10,000 years ago, or a result of the intrinsic biotic factors that influence occurrence data affecting the hypervolume dimensions of each realized niche in similar ways. Geographic predictions indicate that most of the TWD’s range has likely been surveyed, and that there may be connectivity between PRE humpback dolphins and at least one neighbouring putative population due to continuous predicted suitable habitat in waters that remain poorly surveyed. Overall, my thesis demonstrates that density patterns may vary over time, but on a broad temporal scale, these two allopatric groups of Indo-Pacific humpback dolphins have similar habitat requirements in geographically isolated, but environmentally similar locations. Author Keywords: density, habitat, Indo-Pacific humpback dolphin, niche overlap, Sousa chinensis, species distribution model

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Environmental and Life Sciences
  • (-) = Doctor of Philosophy

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/11/21

Author Last Name

Show more

Last Name (Other)

Show more