Graduate Theses & Dissertations

Pages

successful invader in expansion
Researchers have shown increasing interest in biological invasions for the associated ecological and economic impacts as well as for the opportunities they offer to study the mechanisms that induce range expansion in novel environments. I investigated the strategies exhibited by invasive species that facilitate range expansion. Invasive populations exhibit shifts in life-history strategy that may enable appropriate responses to novel biotic and abiotic factors encountered during range expansion. The spatio-temporal scales at which these shifts occur are largely unexplored. Furthermore, it is not known whether the observed dynamic shifts represent a consistent biological response of a given species to range shifts, or whether the shifts are affected by the abiotic characteristics of the new systems. I examined the life-history responses of female round gobies Neogobius melanastomus across fine and coarser spatial scales behind the expansion front and investigated whether invasive populations encountering different environmental conditions (Ontario vs France) exhibited similar life-history shifts. In both study systems, I found an increase in reproductive investment at invasion fronts compared to longer established areas at coarse and fine scales. The results suggest a similar response to range shifts, or a common invasion strategy independent of environmental conditions experienced, and highlight the dynamic nature of an invasive population’s life history behind the invasion front. The second part of my research focused on the development of an appropriate eDNA method for detecting invasive species at early stages of invasion to enable early detection and rapid management response. I developed a simple, inexpensive device for collecting water samples at selected depths for eDNA analysis, including near the substrate where eDNA concentration of benthic species is likely elevated. I also developed a protocol to optimise DNA extraction from water samples that contain elevated concentration of inhibiters, in particular near-bottom samples. Paired testing of eDNA and conventional surveys was used to monitor round goby expansion along its invasion pathway. Round gobies were detected in more sites with eDNA, permitting earlier, more accurate, upstream detection of the expansion front. My study demonstrated the accuracy and the power of using eDNA survey method to locate invasion fronts. Author Keywords: Age-specific reproductive investment, DNA extraction, Energy allocation, Fecundity, Invasion front, Range expansion
role of Cln5 in autophagy, using a Dictyostelium discoideum model of Batten disease
This thesis investigated the role of the neuronal ceroid lipofuscinosis protein, Cln5, during autophagy. This was accomplished by performing well-established assays in a Dictyostelium cln5 knockout model (cln5-). In this study, cln5- cells displayed a reduced maximum cell density during growth and impaired cell proliferation in autophagy-stimulating media. cln5- cells had an increased number of autophagic puncta (autophagosomes and lysosomes), suggesting that autophagy is induced when cln5 is absent. cln5- cells displayed increased amounts of ubiquitin-positive proteins but had no change in proteasome protein abundance. During the development of cln5- cells, fruiting bodies developed precociously and cln5- slug size was reduced. Lastly, when cln5- cells were developed on water agar containing ammonium chloride (NH4Cl), a lysosomotropic agent, the formation of multicellular structures was impaired, and the small slug phenotype was exaggerated. In summary, these results indicate that Cln5 plays a role in autophagy in Dictyostelium. The cellular processes that regulate autophagy in Dictyostelium are similar to those that regulate the process in mammalian cells. Thus, this research provides insight into the undefined pathological mechanism of CLN5 disease and could identify cellular pathways for targeted therapeutics. Author Keywords: Autophagy, Batten disease, Cln5, Dictyostelium discoideum, NCL
mechanistic analysis of density dependence in algal population dynamics
Population density regulation is a fundamental principle in ecology, however there remain several unknowns regarding the functional expression of density dependence. One prominent view is that the patterns by which density dependence is expressed are largely fixed across a species, irrespective of environmental conditions. Our study investigated the expression of density dependence in Chlamydomonas reinhartti grown under a gradient of nutrient densities, and hypothesized that the relationship between per capita growth rate (pgr) and population density would vary from concave-up to concave-down as nutrients became less limiting. Contrary to prediction, we found that the relationship between a population's pgr and density became increasingly concave-up as nutrient levels increased. Our results suggest that density dependence is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density regulation depends extensively on local conditions. Population growth suppression may be attributable to environments with high intraspecific competition. Additional work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time. Author Keywords: Chlamydomonas reinhartti, density dependence, logistic model, population dynamics, single species growth, theta-logistic equation
effects of heat dissipation capacity on avian physiology and behaviour
In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds. Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch
White-Tailed Fear
The primary method used to maintain white-tailed deer (Odocoileus virginianus) populations at densities that are ecologically, economically, socially, and culturally sustainable is hunter harvest. This method considers only the removal of animals from the population (the direct effect) and does not conventionally consider the costs imposed on deer as they adopt hunter avoidance strategies (the risk effect). The impact of risk effects on prey can exceed that of direct effects and there is interest in applying this concept to wildlife management. Deer are potential candidates as they have demonstrated behavioural responses to hunters. I explored the potential of such a management practice by quantifying how human decisions around hunting create a landscape of fear for deer and how deer alter their space use and behaviour in response. I used a social survey to explore the attitudes of rural landowners in southern and eastern Ontario towards deer and deer hunting to understand why landowners limited hunting on their property. I used GPS tracking devices to quantify habitat selection by hunters and hunting dogs (Canis familiaris) to better understand the distribution of hunting effort across the landscape. I used GPS collars to quantify the habitat selection of deer as they responded to this hunting pressure. I used trail cameras to quantify a fine-scale behavioural response, vigilance, by deer in areas with and without hunting. Human actions created a highly heterogeneous landscape of fear for deer. Landowner decisions excluded hunters from over half of the rural and exurban landscape in southern and eastern Ontario, a pattern predicted by landowner hunting participation and not landcover composition. Hunter decisions on whether to hunt with or without dogs resulted in dramatically different distributions of hunting effort across the landscape. Deer showed a high degree of behavioural plasticity and, rather than adopting uniform hunter avoidance strategies, tailored their response to the local conditions. The incorporation of risk effects into white-tailed deer management is feasible and could be done by capitalizing on a better understanding of deer behaviour to improve current management practices or by designing targeted hunting practices to elicit a landscape of fear with specific management objectives. Author Keywords: Brownian bridge movement models, hunting, landscape of fear, resource utilization functions, risk effects, white-tailed deer
Using DNA Barcoding to Investigate the Diet and Food Supply of a Declining Aerial Insectivote, the Barn Swallow (Hirundo rustica)
Barn Swallow (Hirundo rustica) populations have declined in North America over the past 40 years and they are listed as Threatened in Ontario, Canada. Changes in the food supply have been hypothesized as a potential cause of this population decline. I used DNA barcoding to investigate the diet and food supply of Barn Swallows and to determine if the food supply affects their reproductive performance. In two breeding seasons, I monitored nests, collected fecal samples, and monitored prey availability by collecting insects from the habitat surrounding breeding sites using Malaise traps. I used DNA barcoding to identify insect specimens collected from the habitat and to identify prey items from Barn Swallow nestling fecal samples. I found that Barn Swallow nestlings were fed a very broad range of prey items but were fed larger prey items more frequently. Prey availability was not related to the timing of reproduction, the number of nests at a breeding site, or the reproductive output of individual nests. This study provides information on the diet composition of Barn Swallows in North America and suggests that food limitation during the breeding season may not be a major factor in their population decline. Author Keywords: aerial insectivore, diet, DNA barcoding, Hirundo rustica, metabarcoding, reproductive success
Understanding the establishment of Typha spp. in North America using population genetics and common garden studies
There are three cattail (Typha) taxa in Canada: T. latifolia (native), T. angustifolia (introduced), and their hybrid T. x glauca. The latter is invasive in regions around the Laurentian Great Lakes, and I investigated the potential role that commercial suppliers may be playing in the introduction of non-native Typha by comparing genotypes of North American, European, and commercially available plants. I found that Ontario garden centres are importing both hybrids and non-native lineages of T. angustifolia into Canada, but was unable to identify the provenance of T. latifolia. I also investigated the possibility that the hybrid cattail leaf litter shade and leachate influences germination and early growth of the parental species of the hybrids. Using three common garden experiments, I found that T. x glauca leaf litter suppresses germination rates of the three taxa. In the early seedling growth experiment, plant performance varied by taxa, and for the competition experiment there were no intra- or interspecific competition or treatment effects on the performance of plants. Overall, my research identified a potential mechanism allowing T. x glauca to dominate wetlands, and also shows that non-native lineages are being introduced into Canada through commercial trade Author Keywords: Competition, Germination, Non-native lineages, Plant nurseries, Seedling Growth, Typha spp.
Time-dependent effects of predation risk on stressor reactivity and growth in developing larval anurans (Lithobates pipiens)
The predator vs. prey dynamic is an omnipresent factor in ecological systems that may drive changes in life history patterns in prey animals through behavioural, morphological, and physiological changes. Predation risk can have profound effects on the life history events of an animal, and is influenced by the neuroendocrine stress response. Activation of the hypothalamic-pituitary-adrenal/interrenal axis, and the induction of stress hormones (e.g., corticosterone (CORT)) have been shown to mediate the onset of inducible anti-predator defensive traits including increased tail-depth, and reduced activity. The predator-prey relationship between dragonfly nymphs and tadpoles can be a powerful model system for understanding mechanisms that facilitate changes in the stress response in accordance with altered severity of risk. It has been well demonstrated early in tadpole ontogeny that increased corticosterone (CORT) levels, observed within three weeks of predator exposure, are correlated with increased tail depth morphology. However, the reactivity of the stress response in relation to the growth modulation in developing prey has yet to be fully explored. Accordingly, this thesis assessed the stress and growth response processes in tadpoles that were continuously exposed to perceived predation risk later in ontogeny. Continuous exposure of prey to predation risk for three weeks significantly increased CORT levels, and tail depth. However, tadpoles exposed to six weeks of predation risk acclimated to the presence of the predator, which was observed as a significant reduction of stressor-induced CORT levels. In addition, although increased tail depth has been attributed to predator defense, predator-naïve tadpoles began to display similar tail depth morphology as treated tadpoles at the six week time point. Thus, this thesis suggests that the stress response in lower vertebrate systems (e.g., tadpoles) may operate in a similarly complex manner to that observed in higher vertebrates (e.g., rats), for which severity of risk associated with the stressor aids in defining activity of the stress response. Moreover, the lack of morphological difference between treatments among tadpoles exposed later in ontogeny suggests that the mechanisms for inducing defenses are normal morphological traits in the development of the animal. This thesis paves the way for future research to elucidate the relationship between the neuroendocrine stress response and hormonal pathways involved in growth modulation in the presence of environmental pressures. Author Keywords: Acclimation, Corticosterone, Growth Modulation, Predation Risk, R. pipiens, Tadpole
Tests of the Invasional Meltdown Hypothesis in invasive herbaceous plant species in southern Ontario
According to the Invasional Meltdown Hypothesis (IMH), invasive species may interact in their introduced range and facilitate future invasions. This study investigated the possibility that Alliaria petiolata, an invasive allelopathic herbaceous plant in Ontario, is facilitating invasions by additional alien species. Two allelopathic focal species were chosen for this study: the native Solidago canadensis and the invasive A. petiolata. Field surveys in southern Ontario that quantified plant biodiversity in plots that included one or both focal species revealed no support for the IMH, although fewer species co-existed with A. petiolata than with S. canadensis. A year-long recruitment experiment in Peterborough, Ontario, also produced results inconsistent with the IMH, although did provide some evidence that A. petiolata limited recruitment of other species. These results collectively show negative impacts on regional biodiversity by A. petiolata, even in the absence of an invasional meltdown. Author Keywords: allelopathy, Alliaria petiolata, co-occurrence surveys, invasional meltdown hypothesis, invasive species, Solidago canadensis
Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)
The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism’s ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes. Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion
Temporo-spatial patterns of occupation and density by an invasive fish in streams
Since its introduction to North America in the 1990s, the Round Goby has spread throughout the Great Lakes, inland through rivers and is now moving into small tributary streams, a new environment for this species in both its native and invaded ranges. I explored density and temporal occupation of Round Gobies in four small streams in two systems in south-central Ontario, Canada in order to determine what habitat variables are the best predictors of goby density. Two streams are tributaries of Lake Ontario and two are tributaries of the Otonabee River, and all of these streams have barriers preventing upstream migration. I found that occupation and density differed between the systems. In the Otonabee River system, Round Gobies occupy the streams year round and the most important factor determining adult density is distance from a barrier to upstream movement, with the entire stream occupied but density highest next to the barriers. In the Lake Ontario system, density is highest at mid-stream and Round Gobies appear to occupy these streams mainly from spring to fall. Adult density in Lake Ontario tributaries is highest in sites with a high percentage of cobble/boulder and low percentage of gravel substrate, while substrate is less important in Otonabee River tributaries. Occupation and density patterns may differ due to contrasting environmental conditions in the source environments and distance to the first barrier preventing upstream movement. This study shows diversity in invasion strategies, and provides insight into the occurrence and movement patterns of this species in small, tributary streams. Author Keywords: biological invasion, Generalised Additive Mixed Model, habitat, Neogobius melanostomus, Round Goby, stream
Syrphidae (Diptera) of northern Ontario and Akimiski Island, Nunavut
Syrphids, also known as hover flies (Diptera: Syrphidae) are a diverse and widespread family of flies. Here, I report on their distributions from a previously understudied region, the far north of Ontario, as well as Akimiski Island, Nunavut. I used samples collected through a variety of projects to update known range and provincial records for over a hundred species, bringing into clearer focus the distribution of syrphids throughout this region. I also analysed a previously un-tested trap type for collecting syrphids (Nzi trap), and report on results of DNA analysis for a handful of individuals, which yielded a potential new species. Author Keywords: Diptera, Ontario, range extension, Syrphidae

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Ridgway
  • (-) = Biology

Filter Results

Date

2012 - 2032
(decades)
Specify date range: Show
Format: 2022/08/13