Graduate Theses & Dissertations

Pages

Spatial Dynamics of Wind Pollination in Broadleaf Cattail (Typha latifolia)
Natural populations of flowering plants rarely have perfectly uniform distributions, so trends in pollen dispersal should affect the size of the pollination neighbourhood and influence mating opportunities. Here I used spatial analysis to determine the size of the pollination neighbourhood in a stand of the herbaceous, wind-pollinated plant (Typha latifolia; broad-leaved cattail) by evaluating patterns of pollen production and seed set by individual cattail shoots. I found a positive correlation between pollen production and seed set among near-neighbour shoots (i.e., within 4 m2 patches of the stand; Pearson's r = 0.235, p < 0.05, df = 77) that was not driven by a correlation between these variables within inflorescences (Pearson's r = 0.052, p > 0.45, df = 203). I also detected significant spatial autocorrelations in seed set over short distances (up to ~ 5 m) and a significant cross-correlation between pollen production and seed set over distances of < 1 m indicating that the majority of pollination events involve short distances. Patterns of pollen availability were simulated to explore the shape of the pollen dispersal curve. Simulated pollen availability fit actual patterns of seed set only under assumptions of highly restricted pollen dispersal. Together, these findings indicate that even though Typha latifolia produces copious amounts of pollen, the vast majority of pollen dispersal was highly localized to distances of ~ 1 m. Moreover, although Typha latifolia is self-compatible and has been described as largely selfing, my results are more consistent with the importance of pollen transfer between nearby inflorescences. Therefore, realized selfing rates of Typha latifolia should largely depend on the clonal structure of populations. Author Keywords: clonal structure, correlogram, dispersal curves, pollination, spatial analysis, Typha latifolia
Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft, Ontario, Canada
ABSTRACT Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft Ontario, Canada. Michael R. Allan Parturition site selection by ungulates is believed to be influenced by forage abundance and concealment from predators. In 2011 and 2012, I used vaginal implant transmitters and movements to identify calving sites for 23 GPS collared elk (Cervus elaphus) from a restored herd. I tested the hypothesis that maternal elk used sites with higher forage and denser concealment compared to pre-calving sites at micro and macrohabitat levels. I detected no significant microhabitat differences from direct measurements of vegetation. At the macrohabitat scale, based on proximity of landcover classes, mean distances to hardwood forests was significantly less for calving (153 m) than pre-calving sites (198 m). Site fidelity is hypothesized to offer security in terms of familiarity to an area. I tested the hypothesis that females demonstrated fidelity to their previous year's location during pre-partum, parturition, post partum, breeding and winter periods. Elk were more philopatric during parturition and post partum than during breeding. Compared to winter elk were more philopatric during pre-partum, parturition and post-partum periods. Expressed as distance between consecutive-year calving locations, site fidelity varied with 27% of females exhibiting high (<1 km), 18% moderate and 55% (>2.9 km) low fidelity. I measured nearest-neighbour distances at calving time, exploring the hypothesis that females distance themselves from conspecifics. Elk increased the average distances to collared conspecifics during parturition; however, sample sizes were small. This strategy might influence calving site selection. Rapid movement prior to parturition, low site fidelity and spacing-out of females during parturition appear to be strategies to minimize predator risk and detection. Little evidence of selection for vegetation structure suggests this may not be limiting to these elk. Author Keywords: calving, elk, fidelity, movement, parturition, selection
Factors Controlling Peat Chemistry and Vegetation Composition in Sudbury Peatlands after 30 Years of Emission Reductions
Peatlands are prevalent in the Sudbury, Ontario region. Compared with the well documented devastation to the terrestrial and aquatic ecosystems in this region, relatively little work has been conducted on the peatlands. The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands in Sudbury after over 30 years of emission reductions. Peatland chemistry and the degree of humification varies considerably, but sites closer to the main smelter had more humified peat and the surface horizons were enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with Cu and Ni in the plant tissue of leatherleaf, although the increased foliar metal content did not obviously impact secondary chemistry stress indicators. The pH and mineral content of peat were the strongest determining factors for species richness, diversity and community composition. The bryophyte communities appear to be acid and metal tolerant, although Sphagnum mosses are showing limited recovery. Author Keywords: anthropogenic emissions, bryophytes, community comspoition, heavy metals, peatlands, wetland vegetation
mechanistic analysis of density dependence in algal population dynamics
Population density regulation is a fundamental principle in ecology, however there remain several unknowns regarding the functional expression of density dependence. One prominent view is that the patterns by which density dependence is expressed are largely fixed across a species, irrespective of environmental conditions. Our study investigated the expression of density dependence in Chlamydomonas reinhartti grown under a gradient of nutrient densities, and hypothesized that the relationship between per capita growth rate (pgr) and population density would vary from concave-up to concave-down as nutrients became less limiting. Contrary to prediction, we found that the relationship between a population's pgr and density became increasingly concave-up as nutrient levels increased. Our results suggest that density dependence is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density regulation depends extensively on local conditions. Population growth suppression may be attributable to environments with high intraspecific competition. Additional work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time. Author Keywords: Chlamydomonas reinhartti, density dependence, logistic model, population dynamics, single species growth, theta-logistic equation
regional comparison of the structure and function of benthic macroinvertebrate communities within Precambrian Shield and St. Lawrence lowland lakes in south-central Ontario
Benthic macroinvertebrtes (BMI) are functionally important in aquatic ecosystems; as such, knowledge of their community structure and function is critical for understanding these systems. BMI were sampled from ten lakes in each of two regions of south-central Ontario to investigate which chemical and physical variables could be shaping their community structure and function. Ten Precambrian Shield lakes in the Muskoka-Haliburton region, and ten St Lawrence lowland lakes in the Kawartha lakes region were sampled. These lakes are geologically and chemically distinct, creating natural chemical and physical gradients within and between both regions. Community function was assessed using stable isotope analysis to elucidate carbon transfer dynamics (δ13C) and food web interactions (δ15N). It was predicted that the BMI from Shield lakes would have a δ13C signature indicative of allochthonous carbon subsidies, whereas the lowland lake BMI signatures would reflect autochthonous production. Additionally, it was predicted that the food web length (measured in δ15N units) would be different in Shield and lowland lakes. Both of these predictions were supported; however, the data indicate that δ13C signatures are more likely influenced by catchment geology (represented by bicarbonate concentration) than the extent of allochthony. The best predictor of food web length was found to be region. To assess BMI community structure, taxonomic richness, %EPT (% Ephemeroptera, Plecoptera, Trichoptera; a water quality index), and distribution of functional feeding groups were examined. Based on chemistry it was expected that the Shield lakes would be more speciose, and of greater water quality (relatively lower nutrient levels). These predictions were rejected; since there were no significant regional differences in taxonomic richness or biologically inferred water quality (%EPT). However, sediment size was found to best explain the variability in both metrics, with greater richness and %EPT found at sites with medium and small substrates than those with large substrates. Significant regional differences were found in the distribution of functional feeding groups. Most notably, there were significantly greater proportions of scrapers and shredders in the lowland and Shield lakes, respectively. Based on the feeding mechanisms of these invertebrates it can be inferred that allochthonous subsidies are likely of greater importance to Shield lake BMI communities than those of the lowland lakes; supporting the carbon transfer prediction. These findings provide insight about the structure and function of BMI communities from two dominant lake types in Ontario, and could be useful when determining how future chemical and physical changes will impact these communities. Author Keywords: benthic macroinvertebrates, community function, community structure, Precambrian Shield, stable isotopes, St. Lawrence lowlands
EVALUATION OF HAYFIELD MANAGEMENT STRATEGIES AND BOBOLINK TERRITORIAL HABITAT IN SOUTHERN ONTARIO
I implemented three hayfield management regimens in southern Ontario (a typical schedule at the farmer`s discretion, a delayed first harvest after July 14, and an early first harvest before June 1 with 65 days before second harvest), and evaluated the costs/benefits to farmers regarding hay quality and feasibility, and to Bobolinks (Dolichonyx oryzivorus) regarding reproductive activity and phenology. Typical management resulted in little to no Bobolink reproductive success, and early harvested sites were not (re)colonized. On delayed harvest sites Bobolinks experienced high reproductive success, but hay quality fell below ideal protein levels for most cattle before harvest. I also examined the habitat features Bobolinks use as the basis for establishing territories and associations between Bobolink territory size and habitat quality. I compared vegetation structure, patch size, and prey abundance between small and large territories. Small territories typically occurred on smaller fields with more preferred vegetation characteristics and greater prey abundance. Author Keywords: agro-ecosystem, Bobolink, Dolichonyx oryzivorus, grassland birds, hayfield management
Widespread changes in growth, diet and depth distribution of lake whitefish (Coregonus clupeaformis) in the Great Lakes are linked to invasive dreissenid mussels
Recent declines in growth and condition of Great Lakes' lake whitefish (Coregonus clupeaformis) have been linked to ecosystem-wide changes stemming from the invasion of dreissenid mussels. To test the influence of invasive mussels on this commercially important coregonid species, we collected archived scale samples from ten Great Lake locations and analyzed long-term changes in growth rates, delta 13C and delta 15N stable isotope ratios before and after mussel establishment. There was a decrease in pre-maturation growth after establishment in all four locations where we examined back-calculated growths. In six of the seven locations with dreissenid populations, a significant increase in delta 13C and a significant decrease in delta 15N was found. In dreissenid-absent locations of Lake Superior, we did not see changes in growth or isotope ratios indicative of a major regime shift. Observed shifts in isotopic signatures provide evidence for an increased reliance on nearshore food sources and shallower depth distribution as a result of dreissenids, which likely contributed to lowered growth of lake whitefish. Author Keywords: Diporeia, Dreissenids, food web, Great Lakes, invasive species, lake whitefish
Carbon and Nitrogen Isotope Changes in Streams along an Agricultural Gradient
Nitrogen is a major constituent of agricultural fertilizers, and nitrogen inputs to stream water via runoff and groundwater lead to a variety of negative environmental impacts. In order to quantify the movement of nitrogen through aquatic food webs, fourteen streams with varying land uses across South-Central Ontario were sampled for two species of fish, freshwater mussels, and water for measurement of isotope ratios of δ15N and δ13C. I found that nitrogen isotopes in fish, water, and mussels were related to the percentage of riparian monoculture, and that carbon isotopes were unrelated to monoculture. Though all species were enriched as monoculture increased, the rate of δ15N enrichment as monoculture increased did not vary between species. This study has improved our understanding of how monoculture affects nutrient enrichment in stream food webs, and assesses the validity of using nitrogen isotopes to measure trophic positions of aquatic organisms across an environmental gradient. Author Keywords: agriculture, fish, food webs, nitrogen, stable isotopes, streams
Longitudinal trends of benthic invertebrates in regulated rivers
The Serial Discontinuity Concept describes the downstream recovery of key biophysical variables below an impoundment. With the proliferation of hydropower dams to meet increasing societal demands, further refinement and understanding of the Serial Discontinuity Concept is needed to accurately predict downstream impacts and ensure the proper management of rivers. In this study, I examine SDC predictions on physical, chemical and biological recovery in regulated rivers providing evidence from 1) a comprehensive literature review and 2) a formal test using two regulated rivers in Northern Ontario. I specifically address how these changes are reflected in benthic invertebrate abundance, diversity, and community composition. The literature review and case studies support the predicted recovery of temperature, periphyton, substrate, and drift. In addition, the study suggests that two recovery gradients exist in regulated rivers: 1) a longer, thermal gradient taking up to hundreds of kilometres downstream; and 2) a shorter, resource subsidy gradient recovering within 1-4 km downstream of an impoundment. Total benthic invertebrate abundance varies considerably and depends on the degree of flow alteration and resource subsidies from the upstream reservoir. In contrast, benthic diversity is reduced below dams irrespective of dam location and operation with little recovery observed downstream. Contrary to SDC predictions, the longitudinal gradient in regulated rivers is not a compaction of functional changes seen over several stream orders in natural rivers but a response to dam design and reservoir conditions. Stoneflies and dragonflies are particularly sensitive to regulation while filter feeding invertebrates are enhanced. Ward and Stanford's (1983) Serial Discontinuity Concept is still a useful framework for testing hypotheses. Future studies should further expand the SDC through empirical estimation within the context of the landscape to gain a better scientific understanding of regulated river ecology. Author Keywords: benthic invertebrates, dams, longitudinal, recovery, River Continuum Concept, Serial Discontinuity Concept
Spatial dynamics of pollination in dioecious Shepherdia canadensis in Yukon, Canada
Sexual reproduction in flowering plants depends on investment in reproduction, the mode of pollen transfer, the availabilities of nutrient resources and potential mates, and the spatial scales over which these processes take place. In this thesis, I studied the general reproductive biology of Shepherdia canadensis (L.) Nutt. (Elaeagnaceae) and the suite of pollinators that visit the plants in Ivvavik National Park, Yukon, Canada. Across ten sites, I found that S. canadensis females were larger than males, but males produced more flowers than females at most sites. Males typically occurred at higher frequencies than females with the average male to female sex ratio being 1.19 ± 0.08 (mean ± SE, n = 10 sites). Both shrub size and flower production were significantly influenced by interactions between soil nitrogen and sex. Insect visitors to S. canadensis flowers were primarily ants and flower flies (Syrphidae), but exclusion experiments indicated that visitation by flying insects yielded greater fruit production than visitation by crawling insects. I found that fruit set was limited by the density of males within populations, but only over small distances (4-6 m). This is the first study to demonstrate that female reproductive success of a generalist-pollinated dioecious plant is limited by the density of males over small spatial scales. Author Keywords: dioecy, pollinators, sex ratio, sexual dimorphism, Shepherdia canadensis
Habitat use and community structure of grassland birds in southern Ontario agro-ecosystems.
Most grassland bird populations are in decline, so it is becoming increasingly important to understand how they use agricultural field types and form their communities. I performed point counts in cultural meadow, intensive agriculture, and non-intensive agriculture areas in 2011 and 2012. Generalized linear models were used to determine the habitat relationships of six focal species. I found that non-intensive agriculture was used most often and intensive agriculture was often avoided, but there were exceptions which indicate habitat use can be species-specific. I determined in which habitats competition was likely occurring and which species pairs were competing in 2011. In 2012, I experimentally tested these relationships by introducing artificial competitors onto sites. By comparing presence-absence data from 2011 to 2012, I found evidence of habitat-mediated interspecific and conspecific attraction involving Bobolink and Grasshopper Sparrow. This research contributes to the current understanding of grassland bird community ecology and conservation. Author Keywords: agriculture, BACI, community ecology, habitat use, species at risk, species interactions
MOVEMENT PARAMETERS AND SPACE USE FOR THE SOUTHERN HUDSON BAY POLAR BEAR SUBPOPULATION IN THE FACE OF A CHANGING CLIMATE
Changes to the Arctic and sub-Arctic climate are becoming increasingly evident as it warms faster than other areas of the globe, supporting evidence that predictions of future warming will be amplified due to positive feedback mechanisms. The Southern Hudson Bay polar bear (Ursus maritimus) subpopulation is one of the most southerly subpopulations in the world, putting it at increased risk due to effects of climate change. Whereas many other subpopulations have been the subject of intense research and monitoring, little research has been completed detailing the movement behaviour and space use of bears within Southern Hudson Bay. I used detailed movement data collected on female polar bears to establish a baseline of movement information for this subpopulation to which future work can be compared and effects of climate change can be assessed I evaluated the use of core areas during critical periods of the year (breeding and ice breakup) and evaluated common space use as a means of assessing site fidelity during the breeding season. Movement rates and home range sizes were comparable to those of the neighbouring Western Hudson Bay subpopulation. I also found evidence of increased occurrences of long distance, late fall movements along the coast to the northwest, presumably to gain earlier access to first ice. Though space use analysis did not reveal evidence of site fidelity to specific breeding areas in Hudson Bay, I found that core use areas are at risk of substantially shortened ice duration (x¯ =76 days shorter) using projected ice data based on the high emissions A2 climate change scenario. Author Keywords: climate change, Hudson Bay, movement, polar bear, sea ice, utilization distribution

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Doctor of Philosophy
  • (-) ≠ Entomology
  • (-) = Ecology

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/04/24