Graduate Theses & Dissertations

Pages

Phosphorus forms and response to changes in pH in acid-sensitive soils on the Precambrian Shield
Catchment soil acidification has been suggested as a possible mechanism for reducing phosphorus (P) loading to surface waters in North America and northern Europe, but much of the research that has been conducted regarding P immobilization in pH manipulated soils has been performed at high P concentrations (> 130 μM). This study investigated how soil acidity was related to P fractionation and P sorption at environmentally relevant P concentrations to evaluate the potential influence of long term changes in soil pH on P release to surface waters. Total phosphorus (TP) concentrations declined between 1980 and 2000 in many lakes and streams in central Ontario; over the same time period forest soils in this region became more acidic. Soils were collected from 18 soil pits at three forested catchments with similar bedrock geology but varying TP export loads. The soil pH at the 18 study soil pits spanned the historic soil pH range, allowing for `space for time' comparison of soil P factions. Soils were analysed by horizon for P fractions via Hedley P fractionation. Batch P sorption experiments were performed on selected B-horizon soils at varied solution pH. Soil P fractions varied by horizon but were comparable among the three catchments, with only apatite (PHCl) differing significantly across catchments. Contrary to expectation, both soluble and labile P showed negative relationships with pH in some horizons. Mineral soils were able to sorb almost all (> 90 %) of the P in solution at environmentally relevant P concentrations (4.5 - 45.2 μM). Phosphorus sorption at environmentally relevant P concentrations was unrelated to solution pH but at high P concentration there was a positive relationship between P sorption and solution pH, suggesting a P concentration dependant P sorption mechanism. Phosphorus budgets indicate that P is accumulating within catchments, suggesting that P is being immobilized in the terrestrial environment. An alternative hypothesis, which attempts to explain both the decline in stream TP export and terrestrial P accumulation, is discussed. The results from this study suggest that acidification induced P sorption in upland soils are not a contributing factor to decreases in stream TP concentration in the study catchments. Author Keywords: central Ontario, Hedley fractionation, phosphorus, podzols, soil acidification, sorption
effects of environmental variables and dissolved organic matter characteristics on the diffusion coefficient of dissolved organic matter using diffusive gradients in thin films
The efficacy of the diffusive gradients in thin films (DGT) passive samplers to provide accurate measurements of free metal ions and those complexed with dissolved organic matter (DOM) was investigated. DOM controls the diffusive properties of DOM-complexed metal species in natural systems. Knowing the diffusion coeiffiecent (D) for DOM of different molecular weights (MW) and the major environmental variables influencing D is critical in developing the use of DGT passive samplers and understanding labile species. D and MW were determined for natural and standard DOM. No noticeable changes in DOM MW were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. Data analysis revealed that MW had the greatest influence on D, with a negative relationship between D and MW, except in tidal areas where ionic strength influence on D was significant. This study provides further characterization of the variables influencing D using the DGT technique. Author Keywords: Diffusion coefficient, Diffusive gradients in thin films, Dissolved organic matter, Flow field-flow fractionation, Principal Component Analysis, UV-Vis Spectroscopy
Factors Controlling Peat Chemistry and Vegetation Composition in Sudbury Peatlands after 30 Years of Emission Reductions
Peatlands are prevalent in the Sudbury, Ontario region. Compared with the well documented devastation to the terrestrial and aquatic ecosystems in this region, relatively little work has been conducted on the peatlands. The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands in Sudbury after over 30 years of emission reductions. Peatland chemistry and the degree of humification varies considerably, but sites closer to the main smelter had more humified peat and the surface horizons were enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with Cu and Ni in the plant tissue of leatherleaf, although the increased foliar metal content did not obviously impact secondary chemistry stress indicators. The pH and mineral content of peat were the strongest determining factors for species richness, diversity and community composition. The bryophyte communities appear to be acid and metal tolerant, although Sphagnum mosses are showing limited recovery. Author Keywords: anthropogenic emissions, bryophytes, community comspoition, heavy metals, peatlands, wetland vegetation
Investigating the sources and fate of monomethylmercury and dimethylmercury in the Arctic marine boundary layer and waters
Monomethylmercury (MMHg), the most bioavailable form of mercury (Hg) and a potent neurotoxin, is present at elevated concentrations in Arctic marine mammals posing serious health threats to the local populations relying on marine food for their subsistence living. The sources of MMHg in the Arctic Ocean surface water and the role of dimethylmercury (DMHg) as a source of MMHg remain unclear. The objective of this research was to determine the sources and fate of methylated Hg species (MMHg and DMHg) in the marine ecosystem by investigating processes controlling the presence of methylated Hg species in the Arctic Ocean marine boundary layer (MBL) and surface waters. A method based on solid phase adsorption on Bond Elut ENV was developed and successfully used for unprecedented measurement of methylated Hg species in the MBL in Hudson Bay (HB) and the Canadian Arctic Archipelago (CAA). MMHg and DMHg concentrations averaged 2.9 ± 3.6 (mean ± SD) and 3.8 ± 3.1 pg m-3, respectively, and varied significantly among sampling sites. MMHg in the MBL is suspected to be the product of marine DMHg degradation in the atmosphere. MMHg summer (June to September) atmospheric wet deposition rates were estimated to be 188 ± 117.5 ng m-2 and 37 ± 21.7 ng m-2 for HB and CAA, respectively, sustaining MMHg concentrations available for bio-magnification in the pelagic food web. The production and loss of methylated Hg species in surface waters was assessed using enriched stable isotope tracers. MMHg production in surface water was observed from methylation of inorganic Hg (Hg(II)) and, for the first time, from DMHg demethylation with experimentally derived rate constants of 0.92 ± 0.82 x 10-3 d-1 and 0.04 ± 0.02 d-1 respectively. DMHg demethyation rate constant (0.98 ± 0.51 d-1) was higher than that of MMHg (0.35 ± 0.25 d-1). Furthermore, relationships with environmental parameters suggest that methylated Hg species transformations in surface water are mainly biologically driven. We propose that in addition to Hg(II) methylation, the main processes controlling MMHg production in the Arctic Ocean surface waters are DMHg demethylation and deposition of atmospheric MMHg. These results are valuable for a better understanding of the cycle of methylated Hg in the Arctic marine environment. Author Keywords: Arctic Ocean, Atmosphere, Demethylation, Dimethylmercury, Methylation, Monomethylmercury
Aeolian Impact Ripples in Sand Beds of Varied Texture
A wind tunnel study was conducted to investigate aeolian impact ripples in sand beds of varied texture from coarsely skewed to bimodal. Experimental data is lacking for aeolian megaripples, particularly in considering the influence of wind speed on ripple morphometrics. Additionally, the modelling community requires experimental data for model validation and calibration. Eighteen combinations of wind speed and proportion of coarse mode particles by mass were analysed for both morphometrics and optical indices of spatial segregation. Wind tunnel conditions emulated those found at aeolian megaripple field sites, specifically a unimodal wind regime and particle transport mode segregation. Remote sensing style image classification was applied to investigate the spatial segregation of the two differently coloured size populations. Ripple morphometrics show strong dependency on wind speed. Conversely, morphometric indices are inversely correlated to the proportion of the distribution that was comprised of coarse mode particles. Spatial segregation is highly correlated to wind speed in a positive manner and negatively correlated to the proportion of the distribution that was comprised of coarse mode particles. Results reveal that the degree of spatial segregation within an impact ripple bedform can be higher than previously reported in the literature. Author Keywords: Aeolian, Impact Ripples, Megaripple, Self-organization, Wind Tunnel
Dynamics and Mechanisms of Community Assembly in a Mined Carolinian Peatland
Theoretical work on community recovery, development, stability, and resistance to species invasions has outpaced experimental field research. There is also a need for better integration between ecological theory and the practice of ecological restoration. This thesis investigates the dynamics of community assembly following peat mining and subsequent restoration efforts at Canada's most southerly raised bog. It examines mechanisms underlying plant community changes and tests predictions arising from the Dynamic Environmental Filter Model (DEFM) and the Fluctuating Resource Hypothesis (FRH). Abiotic, biotic and dispersal filters were modified to test a conceptual model of assembly for Wainfleet Bog. Hydrology was manipulated at the plot scale across multiple nutrient gradients, and at the whole bog scale using peat dams. Trends in time series of hydrological variables were related to restoration actions and uncontrolled variables including precipitation, evapotranspiration and arrival of beaver. Impacts of a changing hydrology on the developing plant community were compared with those from cutting the invasive Betula pendula. Transplanting experiments were used to examine species interactions within primary and secondary successional communities. Seedlings of B. pendula and the native Betula papyrifera were planted together across a peat volumetric water content (VWC) gradient. Impacts of beaver dams were greater than those of peat dams and their relative importance was greatest during periods of drought. Cutting of B.pendula had little effect on the secondary successional plant community developing parallel to blocked drains. Phosphorus was the main limiting nutrient with optimum levels varying substantially between species. Primary colonisers formed a highly stable, novel plant community. Stability was due to direct and indirect facilitative interactions between all species. Reduction in frost heaving was the major mechanism behind this facilitation. Interactions within the secondary successional community were mostly competitive, driven by light and space availability. However, restricted dispersal rather than competition limited further species recruitment. Predictions based on the DEFM were partially correct. A splitting of this model's biotic filter into competition and facilitation components is proposed. There was little support for the FRH based on nutrient levels and VWC. B. pendula had higher germination and growth rates, tolerance to a wider range of peat VWCs and a greater resistance to deer browsing than native birch. Peat mining, combined with restoration actions and the arrival of beaver has moved much of the bog back to an earlier successional stage circa 350+ years BP. Evidence points to B. pendula being a "back-seat driver" in the ecosystem recovery process. Indirect facilitation of a native by an exotic congener, mediated through herbivory, has not been described previously. Shifts in relative contributions of facilitation, competition and dispersal limitations to community assembly may be useful process-oriented measures for gauging progress in restoration. Author Keywords: Betula pendula, community assembly, competition, facilitation, peatland, restoration
CO2 dynamics of tundra ponds in the low-Arctic Northwest Territories, Canada
Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d-1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the Arctic's atmospheric CO2 concentrations now and in the future. Author Keywords: Arctic, Arctic Ponds, Carbon dioxide, Carbon Fluxes, Climate Change, NDIR sensor
Hydroclimatic and spatial controls on stream nutrient export from forested catchments
Winter nutrient export from forested catchments is extremely variable from year-to-year and across the landscape of south-central Ontario. Understanding the controls on this variability is critical, as what happens during the winter sets up the timing and nature of the spring snowmelt, the major period of export for water and nutrients from seasonally snow-covered forests. Furthermore, winter processes are especially vulnerable to changes in climate, particularly to shifts in precipitation from snow to rain as air temperatures rise. The objective of this thesis was to assess climatic and topographic controls on variability in stream nutrient export from a series of forested catchments in south-central Ontario. The impacts of climate on the timing and magnitude of winter stream nutrient export, with particular focus on the impact of winter rain-on-snow (ROS) events was investigated through a) analysis of long-term hydrological, chemical and meteorological records and b) high frequency chemical and isotopic measurements of stream and snow samples over two winters. The relationship between topography and variability in stream chemistry among catchments was investigated through a) a series of field and laboratory incubations to measure rates and discern controls on nitrogen mineralization and nitrification and b) analysis of high resolution spatial data to assess relationships between topographic metrics and seasonal stream chemistry. Warmer winters with more ROS events were shown to shift the bulk of nitrate (NO3-N) export earlier in the winter at the expense of spring export; this pattern was not observed in other nutrients [i.e. dissolved organic carbon (DOC), total phosphorus (TP), sulphate (SO4), calcium (Ca)]. Hydrograph separation revealed the majority of ROS flow came from baseflow, but the NO3-N concentrations in rainfall and melting snow were so high that the majority of NO3-N export was due to these two sources. Other nutrient concentrations did not show such a great separation between sources, and thus event export of these nutrients was not as great. Proportionally, catchments with varying topography responded similarly to ROS events, but the absolute magnitude of export varied substantially, due to differences in baseflow NO3-N concentrations. Field and laboratory incubations revealed differences in rates of net NO3-N production between wetland soils and upland soils, suggesting that topographic differences amongst catchments may be responsible for differences in baseflow NO3-N. Spatial analysis of digital elevation models revealed strong relationships between wetland coverage and DOC and dissolved organic nitrogen (DON) concentrations in all seasons, but relationships between topography and NO3-N were often improved by considering only the area within 50 or 100m of the stream channel. This suggests nutrient cycling processes occurring near the stream channel may exert a stronger control over NO3-N stream outflow chemistry. Overall, topography and climate exert strong controls over spatial and temporal variability in stream chemistry at forested catchments; it is important to consider the interaction of these two factors when predicting the effects of future changes in climate or deposition. Author Keywords: biogeochemistry, forest, nitrate, south-central Ontario, stream chemistry, winter
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish Alena Kathryn Davidson Celsie A novel dynamic fugacity model is developed that simulates the uptake of chemicals in fish by respiration as applies in aquatic toxicity tests. A physiologically based toxicokinetic model was developed which calculates the time-course of chemical distribution in four tissue compartments in fish, including metabolic biotransformation in the liver. Toxic endpoints are defined by fugacity reaching a 50% mortality value. The model is tested against empirical data for the uptake of pentachloroethane in rainbow trout and from naphthalene and trichlorobenzene in fathead minnows. The model was able to predict bioconcentration and toxicity within a factor of 2 of empirical data. The sensitivity to partition coefficients of computed whole-body concentration was also investigated. In addition to this model development three methods for predicting partition coefficients were evaluated: lipid-fraction, COSMOtherm estimation, and using Abraham parameters. The lipid fraction method produced accurate tissue-water partitioning values consistently for all tissues tested and is recommended for estimating these values. Results also suggest that quantum chemical methods hold promise for predicting the aquatic toxicity of chemicals based only on molecular structure. Author Keywords: COSMOtherm, fish model, fugacity, Partition coefficient, tissue-water, toxicokinetics
Development and Use of Passive Samplers for Monitoring Dissolved and Nanoparticulate Silver in the Aquatic Environment
Silver nanoparticles (nAg) are the largest and fastest growing class of nanomaterials, and are a concern when released into aquatic environments even at low μg L-1+). Diffusive gradient in thin films (DGT) with a thiol-modified resin were used to detect labile silver and carbon nanotubes (CNT-sampler) were used to measure nAg. Laboratory uptake experiments in lake water provided an Ag+ DGT diffusion coefficient of 3.09 x 10 -7 cm2s-1 and CNT sampling rates of 24.73, 5.63, 7.31 mL day-1, for Ag+, citrate-nAg and PVP-nAg, respectively. The optimized passive samplers were deployed in mesocosms dosed with nAg. DGT samplers provided estimated Ag+ concentrations ranging from 0.15 to 0.98 μg L-1 and CNT-samplers provided nAg concentrations that closely matched measured concentrations in water filtered at 0.22 μm. Author Keywords: ICP-MS, mesocosms, nanoparticles, nanosilver, passive sampling
Fate of Silver Nanoparticles in Lake Mesocosms
The fate of silver nanoparticles (AgNPs) in surface waters determines the ecological risk of this emerging contaminant. In this research, the fate of AgNPs in lake mesocosms was studied using both a continuous (i.e. drip) and one-time (i.e. plug) dosing regime. AgNPs were persistent in the tested lake environment as there was accumulation in the water column over time in drip mesocosms and slow dissipation from the water column (half life of 20 days) in plug mesocosms. In drip mesocosms, AgNPs were found to accumulate in the water column, periphtyon, and sediment according to loading rate; and, AgNP coating (PVP vs. CT) had no effect on agglomeration and dissolution based on filtration analysis. In plug mesocosms, cloud point extraction (CPE), single-particle-inductively coupled mass spectroscopy (spICP-MS), and asymmetrical flow field-flow fractionation (AF4-ICP-MS) confirmed the temporal dissolution of AgNPs into Ag+ over time; however, complexation is expected to reduce the toxicity of Ag+ in natural waters. Author Keywords: AF4-ICP-MS, cloud point extraction, fate, mesocosms, silver nanoparticles, SP-ICP-MS
Carbon and Nitrogen Isotope Changes in Streams along an Agricultural Gradient
Nitrogen is a major constituent of agricultural fertilizers, and nitrogen inputs to stream water via runoff and groundwater lead to a variety of negative environmental impacts. In order to quantify the movement of nitrogen through aquatic food webs, fourteen streams with varying land uses across South-Central Ontario were sampled for two species of fish, freshwater mussels, and water for measurement of isotope ratios of δ15N and δ13C. I found that nitrogen isotopes in fish, water, and mussels were related to the percentage of riparian monoculture, and that carbon isotopes were unrelated to monoculture. Though all species were enriched as monoculture increased, the rate of δ15N enrichment as monoculture increased did not vary between species. This study has improved our understanding of how monoculture affects nutrient enrichment in stream food webs, and assesses the validity of using nitrogen isotopes to measure trophic positions of aquatic organisms across an environmental gradient. Author Keywords: agriculture, fish, food webs, nitrogen, stable isotopes, streams

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Bell
  • (-) ≠ Entomology
  • (-) = Environmental science

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/29