Graduate Theses & Dissertations


Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)
Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct. Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics
Relationships between bird densities and distance to mines in Northern Canada
Increased mining activity in the Canadian Arctic has resulted in significant changes to the environment that may be influencing some tundra-nesting bird populations. In this thesis I examine the direct and indirect effects of mining on birds nesting in the Canadian Arctic. I first perform a literature review of the effects that mining in the Arctic has on northern environments and wildlife and outline several ways in which mines affect Arctic-breeding birds. By using the Program for Regional and International Shorebird Monitoring (PRISM) Arctic plot-based bird survey data from across the Canadian Arctic, collected from 1995 to 2018, I identify the effects of distance to mining operations on the occupancy patterns of Arctic-breeding bird species. Six species’ densities were significantly impacted by mine proximity (Canada/Cackling Goose, Long-tailed Duck, Long-tailed Jaeger, Pectoral Sandpiper, Savannah Sparrow, and Rock Ptarmigan) across five major mine sites. Each species has its own unique relationship to distance from mining activity. Author Keywords: Bird populations, Canadian Arctic, Mining, Mining activities, PRISM, Tundra-nesting birds
Carbon and Nitrogen Isotope Changes in Streams along an Agricultural Gradient
Nitrogen is a major constituent of agricultural fertilizers, and nitrogen inputs to stream water via runoff and groundwater lead to a variety of negative environmental impacts. In order to quantify the movement of nitrogen through aquatic food webs, fourteen streams with varying land uses across South-Central Ontario were sampled for two species of fish, freshwater mussels, and water for measurement of isotope ratios of δ15N and δ13C. I found that nitrogen isotopes in fish, water, and mussels were related to the percentage of riparian monoculture, and that carbon isotopes were unrelated to monoculture. Though all species were enriched as monoculture increased, the rate of δ15N enrichment as monoculture increased did not vary between species. This study has improved our understanding of how monoculture affects nutrient enrichment in stream food webs, and assesses the validity of using nitrogen isotopes to measure trophic positions of aquatic organisms across an environmental gradient. Author Keywords: agriculture, fish, food webs, nitrogen, stable isotopes, streams
Eco-evolutionary Dynamics in a Commercially Exploited Freshwater Fishery
Fisheries assessment and management approaches have historically focused on individual species over relatively short timeframes. These approaches are being improved upon by considering the potential effects of both broader ecological and evolutionary processes. However, only recently has the question been raised of how ecological and evolutionary processes might interact to further influence fisheries yield and sustainability. My dissertation addresses this gap in our knowledge by investigating the role of eco-evolutionary dynamics in a commercially important lake whitefish fishery in the Laurentian Great Lakes, a system that has undergone substantial ecosystem change. First, I link the timing of large-scale ecological change associated with a species invasion with shifts in key density-dependent relationships that likely reflect declines in the population carrying capacity using a model selection approach. Then, using an individual-based model developed for lake whitefish in the southern main basin of Lake Huron, I demonstrate how ecosystem changes that lower growth and recruitment potential are predicted to reduce population productivity and sustainable harvest rates through demographic and plastic mechanisms. By further incorporating an evolutionary component within an eco-genetic model, I show that ecological conditions also affect evolutionary responses in maturation to harvest by altering selective pressures. Finally, using the same eco-genetic model, I provide a much-needed validation of the robustness of the probabilistic maturation reaction norm (PMRN) approach, an approach that is widely used to assess maturation and infer its evolution, to ecological and evolutionary processes experienced by exploited stocks in the wild. These findings together highlight the important role that ecological conditions play, not only in determining fishery yield and sustainability, but also in shaping evolutionary responses to harvest. Future studies evaluating the relative effects of ecological and evolutionary change and how these processes interact in harvested populations, especially with respect to freshwater versus marine ecosystems, could be especially valuable. Author Keywords: Coregonus clupeaformis, density-dependent growth, fisheries-induced evolution, individual-based eco-genetic model, Lake Huron, stock-recruitment
Mixed methods approaches in marine mammal science
This thesis explored the contribution of mixed methods approaches to marine mammal science through the use of concurrent and sequential designs to study distribution and feeding ecology of bowhead whales (Balaena mysticetus) in the Arctic region of Nunavik, Quebec, Canada. The study combines Inuit knowledge (IK), collected through semi-directed interviews with Inuit harvesters, and analyses of stable isotopes and trace elements (SI/TE) in baleen plates. A systematic literature review found that mixed methods are increasingly used in marine mammal ecology studies in remote locations, yet are still relatively rare and face a number of challenges. Both IK and SI/TE, indicated that bowhead whales have a seasonal pattern in their distribution and feeding ecology. They are most commonly present in productive nearshore areas in summertime, feeding in areas of great prey diversity, and moving to offshore areas in winter to fast. Mixed methods approaches used in this case study enabled the collection of complementary knowledge about bowhead whale ecology important for local management in a changing climate. This study also shows the value of mixed methods approaches for future marine mammal studies in Nunavik and elsewhere. Author Keywords: Arctic, bowhead whale, distribution, feeding ecology, mixed methods, traditional ecological knowledge
Reproductive Fitness of Smallmouth Bass (Micropterus dolomieu) Under Heterogeneous Environmental Conditions
Identifying the biotic and abiotic factors that influence individual reproductive fitness under natural conditions is essential for understanding important aspects of a species’ evolutionary biology and ecology, population dynamics, and life-history evolution. Using next generation sequencing technology, I developed five microsatellite multiplex reactions suitable for conducting large scale parentage analysis of smallmouth bass, Micropterus dolomieu, and used molecular pedigree reconstruction techniques to characterize the genetic mating system and mate selection in adult smallmouth bass nesting in Lake Opeongo, Ontario, Canada. I used multivariate spatial autocorrelation analysis to indirectly infer the occurrence and extent of natal philopatry among spawning adults, to assess the strength and direction of sex-bias in natal dispersal patterns, and to evaluate the degree of nest site fidelity and breeding dispersal of spawning adults. I also evaluated how differences in littoral zone water temperature caused by wind-induced seiche events influence the relative reproductive success of spawning adults. Lastly, I provide a synopsis of potential future research aimed at further exploring factors that influence the reproductive fitness of smallmouth bass in Lake Opeongo. This information will contribute to our understanding of the factors regulating smallmouth bass populations, and provide insight into the factors controlling the variance in individual reproductive success and thus recruitment dynamics in this species. Author Keywords: Dispersal, Fitness, Mate selection, Mating systems, Philopatry
Genetic Networks to Investigate Structure and Connectivity of Caribou at Multiple Spatial and Temporal Scales
Understanding genetic structure, connectivity, and movement of a species iscritical to management and conservation. Genetic network approaches allow the analysis of genetic information with flexibility and few prior assumptions. In chapter one, I tested the ability of individual-based genetic networks to detect fine-scale structure and connectivity in relation to sampling efforts. My findings revealed individual-based genetic networks can detect fine-scale genetic structure of caribou when using 15 highly variable microsatellite loci. Sampling levels less than 50% of the estimated population size resulted in highly disconnected networks which did not allow for accurate structure analysis; however community detection algorithms were robust in grouping closely related individuals despite low sampling. In chapter two, I used individual-based and population-based genetic networks to investigate structure, connectivity, and movement of caribou across a large study area in Western Canada. A community detection algorithm partitioned the population-based genetic network at multiple spatial scales which uncovered patterns of hierarchical genetic structure and highlighted patterns of gene flow. The hierarchical population structure results aligned with the known distribution of different caribou Designatable Units (DUs) and additional structure was found within each DU. Furthermore, individual-based networks that were constructed with a subset of samples from the Mackenzie Mountains region of the Northwest Territories revealed patterns of long-distance movement and high connectivity across the region. Author Keywords: Biological Conservation, Caribou, Community Detection, Connectivity, Genetic Networks, Structure
Indirect Effects of Hyperabundant Geese on Sympatric-Nesting Shorebirds
Rising populations of Lesser Snow and Ross’ geese (hereafter collectively referred to as light geese) breeding in the North American Arctic have caused significant environmental change that may be affecting some populations of nesting shorebirds, which in contrast to geese, have declined dramatically. In this thesis I examine the indirect effects of light geese on sympatric-nesting shorebirds. I first conduct a literature review of the effects of light geese on northern wildlife and outline multiple mechanisms in which geese may affect shorebirds in particular. Using bird survey data collected in plots situated across the Canadian Arctic from 1999 to 2016, I then identify spatial effects of light goose colonies on shorebird, passerine, and generalist predator densities. The densities of cover- nesting shorebirds and passerines were depressed near goose colonies while the densities of open-nesting shorebirds were less so. Next, using habitat data collected at random sites and shorebird nest sites situated at increasing distances from a goose colony on Southampton Island, Nunavut, I outline the effects of geese on shorebird nest site selection. I found that the availability of sedge meadow and amount of lateral concealment increased as a function of distance from goose colony; cover-nesting shorebirds selecting nest sites with less concealment and sedge meadow near the colony. Then, to characterize spatial effects of light geese on predators and risk of predation I used time-lapse cameras and artificial shorebird nests placed at increasing distances from the goose colony. Activity indices of gulls, jaegers, and foxes were all negatively correlated with distance from the goose colony while the reverse was true for artificial nest survival probability. Finally, I relate changes in ground cover to goose use and link these changes to variation in invertebrate communities. I then use DNA metabarcoding to characterize the diet of six shorebird species across study sites and identify inter-site variation in the biomass of dominant shorebird prey items. Prey item biomass was elevated at the two study sites near the goose colony potentially indicating an enhancing effect of goose fecal deposition. Overall, I show that light geese interact with shorebirds in multiple ways and negatively affect their habitat availability, nest site selection, and risk of predation, effects that likely outweigh the positive effects of enhanced prey availability. Author Keywords:
Biogeography of Carabidae (Coleoptera) in the Boreal forest
Basic biogeographic information is lacking for many species, such as where species are found, and how they dispersed there. Using ground beetles collected during 2008-2015 from across northern Ontario and Akimiski Island, Nunavut, I present new information on ground beetle distribution in this eastern Nearctic boreal forest, including 2 first Canadian records, 9 first provincial and 48 first territorial records, as well as 74 new records that extend the known range of many large and common ground beetles several hundred kilometres. I used these distributions to redress the knowledge gap that includes fundamental distribution data, i.e. the Wallacean shortfall, and to inform later chapters in my thesis.In Chapter 3, I examine the range expansion pattern of Carabus granulatus, a non-native species, as it spread across northeastern North America and I provide a new range record. Northern Ontario is already under threat from non-native species entering the region and it is important to conduct studies in the region before more disturbance associated with development occurs. In Chapter 4, I examine the hypothesis that northern Ontario effectively acts as a climate plateau for poikilotherms, using the predictions from Bergmann's rule as my metric. The body length of ground beetles does not appear to change over the small temperature gradient that exists across northern Ontario latitudes, supporting the climate plateau hypothesis. In Chapter 5, I test hypotheses about dispersal mechanisms that contributed to post glacial re-establishment of ground beetles using predictions of geographic distribution patterns as metrics. I found that ground beetles were likely carried downstream by rivers which aided their dispersal northward from southern refugia. I infer from the current geographic distributions that flightless ground beetle species are still expanding their range in this boreal region. Finally, I argue that there is an urgent need for more basic research on species distributions while it is still possible in regions like northern Ontario, before increased industrial and agricultural development, and expanding resource extraction projects obliterate evidence of historic ecological processes. Author Keywords: Boreal forest, Carabidae, Coleoptera, Passive dispersal, Post-glacial distribution, Range extension
Incidental Take and Population Dynamics of Nesting Birds in a Red Pine (Pinus resinosa) Plantation Under Single-Tree Selection Harvesting
I determined the direct influence of single-tree selection harvesting on the daily nest survival rates and nest success of 5 focal bird species within a monotypic red pine (Pinus resinosa) plantation on the western edge of the Oak Ridges Moraine in southern Ontario, Canada. I located and monitored 290 nests during the 2012 and 2013 breeding season. I used the logistic-exposure method to evaluate the daily nest survival rates of American Robin (Turdus migratorius), Eastern Wood-pewee (Contopus virens), Ovenbird (Seiurus aurocapilla), Rose-breasted Grosbeak (Pheucticus ludovicianus), and Red-eyed Vireo (Vireo olivaceus). Only five nests were destroyed as a result of forestry activity over the study period. Neither daily nest survival rates nor nest success of these focal species were substantially affected by single-tree selection harvesting. I also monitored the impact of single-tree selection harvesting on the density and territory size of 4 of 5 focal species. Ovenbird had a significantly smaller territory size but decreased density in the harvested areas. Although not significant, Eastern Wood-pewee and Red-eyed Vireo tended to have higher densities and larger territory sizes in harvested areas, whereas Rose-breasted Grosbeak showed a mixed effect as density was higher while territory size was smaller. Single-tree selection produces minor to moderate disturbance that takes place locally over a short period of time. As a result, nests that are indirectly disturbed by nearby harvesting, felling trees and mechanical operations and are not destroyed remain and adults do not appear to abandon eggs or young from the disturbance. Habitat alteration from harvesting of the general forest structure and especially the forest floor must be minimized in order to conserve forest bird species diversity. Further research examining incidental take using various intensities of single-tree selection harvesting would provide important insight into maintaining avian and forest diversity by means of forest management. Author Keywords: daily nest survival rates, forest management, Incidental Take, nest success, red pine monotypic forest, single-tree selection harvesting
Widespread changes in growth, diet and depth distribution of lake whitefish (Coregonus clupeaformis) in the Great Lakes are linked to invasive dreissenid mussels
Recent declines in growth and condition of Great Lakes' lake whitefish (Coregonus clupeaformis) have been linked to ecosystem-wide changes stemming from the invasion of dreissenid mussels. To test the influence of invasive mussels on this commercially important coregonid species, we collected archived scale samples from ten Great Lake locations and analyzed long-term changes in growth rates, delta 13C and delta 15N stable isotope ratios before and after mussel establishment. There was a decrease in pre-maturation growth after establishment in all four locations where we examined back-calculated growths. In six of the seven locations with dreissenid populations, a significant increase in delta 13C and a significant decrease in delta 15N was found. In dreissenid-absent locations of Lake Superior, we did not see changes in growth or isotope ratios indicative of a major regime shift. Observed shifts in isotopic signatures provide evidence for an increased reliance on nearshore food sources and shallower depth distribution as a result of dreissenids, which likely contributed to lowered growth of lake whitefish. Author Keywords: Diporeia, Dreissenids, food web, Great Lakes, invasive species, lake whitefish
Environmental structure, morphology and spatial ecology of the five-lined skink (Plestiodon fasciatus) at high latitude range limits
Detecting relevant and meaningful patterns from the complex, interconnected network of relationships between organisms and their environment is a primary objective of ecology. Ecological patterns occur across multiple scales of space and time. In this dissertation, I examine aspects of environmental structure that influence a species’ distribution and are expressed in that species’ population dynamics. I compare the morphology of the five-lined skink (Plestiodon fasciatus) near its high latitude range limits with a lower latitude population and evaluate the economics of their behaviour in the context of its reproductive strategy. I tested the conformity of this species to biogeographical rules postulated by MacArthur, Bergmann, and Rensch. Spatial ecology was investigated in the context of the environmental potential for polygamy proposed by Emlen and Oring (1977) The five-lined skink, Plestiodon fasciatus, conformed to these biogeographic rules. Specifically, abiotic factors were the primary limiting factors affecting distribution at the high latitude range limits of the species; body size was larger in high latitude populations; and the degree of sexual size dimorphism was greater at high latitude than at low latitude. Spatial ecology at the individual scale was influenced by sites with suitable thermal conditions which facilitate the polygynandrous mating system documented in P. fasciatus in high latitude populations. My results confirm the importance of microsites with suitable thermal profiles as key habitat for ectothermic vertebrates at high latitudes. The influence of temperature as a limiting abiotic factor is expressed in population density, body size, spatial ecology, and reproductive strategy of P. fasciatus. Conservation and restoration of high latitude populations of ectothermic vertebrates should focus on ensuring thermal requirements of the species of concern are met before other factors are addressed, as temperature is likely the single most important limiting factor at high latitude range limits. Author Keywords: biogeography, lizard, Plestiodon fasciatus, range limits, sexual size dimorphism, spatial ecology


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Master of Arts
  • (-) = Ecology

Filter Results


2003 - 2023
Specify date range: Show
Format: 2023/02/04

Degree Discipline