Graduate Theses & Dissertations

Pages

Assessing Canada Lynx Dispersal Across an Elevation Barrier
Mountain ranges are often thought to restrict movement of wildlife, yet previous studies evaluating the role of the Rocky Mountains as a dispersal barrier for Canada lynx (Lynx canadensis) have been contradictory. Our study uses neutral microsatellite loci to evaluate the role of the Rocky Mountains as a barrier to gene flow for lynx. Although lynx exhibited low genetic differentiation, we detected a limited effect of the mountains. Furthermore, we inferred the role played by landscape variables in gene flow (genetic differentiation predicted by landscape resistance). Limited gene flow most strongly related to resistance from physical factors (low snow cover and elevation), rather than other topographic and ecological factors (high terrain roughness, low forest cover, low habitat suitability, and geographic distance). Structural connectivity was a relatively poor predictor of functional connectivity. Overall, the Rockies represent an area of reasonably high functional connectivity for lynx, with limited resistance to gene flow. Author Keywords: Canada lynx, connectivity, gene flow, genetic structure, landscape genetics, Rocky mountains
impact of selection harvesting on soil properties and understory vegetation in canopy gaps and skid roads in central Ontario
Tree harvesting alters nutrient cycling and removes nutrients held in biomass, and as a result nutrient availability may be reduced, particularly in naturally oligotrophic ecosystems. Selection harvesting is a silvicultural technique limited to tolerant hardwood forests where individual or small groups of trees are removed creating a “gap” in the forest canopy. In order for harvesting machinery to gain access to these individual trees, trees are felled to create pathways, known as skid roads. The objective of this study was to characterize differences in soil chemical and physical properties in gaps, skid roads and uncut areas following selection harvesting in central Ontario as well as documenting differences in the understory vegetation community and sugar maple (Acer saccharum) seedlings chemical composition post harvest. First year seedlings were collected for elemental analysis from unharvested areas, canopy gaps, and skid roads in 2014, eight months after harvesting. In 2015, first and second year sugar maple seedlings were collected. Soil bulk density and water infiltration were measured in the three areas of the catchment as well as soil moisture, organic matter content, exchangeable base cations, and net nitrification. Seedlings in the disturbed sites had lower concentrations of Mg, K, P, and N compared with unharvested sites and soil nitrification was significantly lower in the skid roads. Water infiltration rates in the gap and skid roads were slower than the control and concentrations of metals (e.g. Fe, Al, Ca) and litter mass increased in litter bags deployed over 335 days, likely reflecting an increase in soil erosion in the skid roads. Understory vegetation was markedly different amongst sites, particularly the dominance of Carex spp. in the skid roads. The sustainability of industrial logging is dependent on successful tree regeneration, however, increased soil compaction, establishment and growth of grasses and shrubs, as well as low nutrient concentrations in seedlings may ultimately restrict forest succession. Author Keywords: Canadian Shield, nitrification, selection harvesting, soil compaction, sugar maple seedling, understory vegetation
Range-Based Component Models for Conditional Volatility and Dynamic Correlations
Volatility modelling is an important task in the financial markets. This paper first evaluates the range-based DCC-CARR model of Chou et al. (2009) in modelling larger systems of assets, vis-à-vis the traditional return-based DCC-GARCH. Extending Colacito, Engle and Ghysels (2011), range-based volatility specifications are then employed in the first-stage of DCC-MIDAS conditional covariance estimation, including the CARR model of Chou et al. (2005). A range-based analog to the GARCH-MIDAS model of Engle, Ghysels and Sohn (2013) is also proposed and tested - which decomposes volatility into short- and long-run components and corrects for microstructure biases inherent to high-frequency price-range data. Estimator forecasts are evaluated and compared in a minimum-variance portfolio allocation experiment following the methodology of Engle and Colacito (2006). Some consistent inferences are drawn from the results, supporting the models proposed here as empirically relevant alternatives. Range-based DCC-MIDAS estimates produce efficiency gains over DCC-CARR which increase with portfolio size. Author Keywords: asset allocation, DCC MIDAS, dynamic correlations, forecasting, portfolio risk management, volatility
Pathogen vs. Predator
Stressors are often an inescapable part of an organism’s life. While the effects of many stressors have been well studied individually, potential interactions between stressors exist that may result in greater than additive negative effects. Stressors may be linked by conflicting demands on energy budgets, interfering with important physiological pathways, or necessitating incompatible adaptive responses. Using Ranavirus (FV3) and larval dragonfly predators (Anax spp.) in a 2x2 factorial experiment on green frog (Lithobates clamitans) tadpoles, I investigate the interactions in behaviour, morphology, and metabolism when both stressors were applied in concert. I demonstrate that activity and feeding are reduced additively by both stressors, and tadpoles increase distance between conspecifics in FV3-exposed tanks, but only in the absence of predators. I also note decreases in mass, and a non-significant marginal increase in metabolic rate of tadpoles exposed to FV3. Interestingly, I provide evidence that FV3 can compromise morphometric responses through antagonistic interactions with perceived predation risk exposure, which may result in significantly elevated mortality even when either stressor is present in sub-lethal quantities. Thus, I conclude that sub-lethal exposure to stressors can nonetheless have substantial impacts on organisms and a more integrative approach to examining the impacts of stressors on individual physiology and fitness is necessary. Author Keywords: Behaviour, Interaction, Morphology, Predation Risk, Ranavirus, Tadpoles
Yearly variation in fall movements of adult female American black bears (Ursus americanus) in central Ontario, Canada
I investigated site fidelity and habitat selection of American black bears (Ursus americanus) from 15 GPS-collared adult females in central Ontario, Canada over nine years. I used generalized linear mixed models to determine the factors affecting between-year variation in fall fidelity and the habitat selection in movement paths. I assessed second and third-order habitat preference by female bears moving between seasonal home ranges. I found that 66% of bears returned to the same fall area between years, expressed as range overlap, influenced negatively by whether they had cubs. When moving between seasonal ranges, bears selected for mixedwood, hardwood and wetlands cover but selected ridge tops over other habitat features at both scales. With increases in climatic uncertainty and habitat fragmentation, these results emphasize the need for wildlife management to consider annual variation in seasonal movements and habitat use by wide-ranging, opportunistic animals. Author Keywords: American black bear, Habitat Selection, Logistic Regression, Site Fidelity
Sweat it out
Many consumers purchase sweatshop products, despite the hazardous conditions for workers. The psychological factors that influence (un) ethical garment purchasing are not well understood. Two studies explored consumers’ knowledge, attitudes, and behaviour. University students (Study 1; N = 130) said they would pay more for ethically-labelled garments, particularly students who were community and future-orientated. Importantly, most students were unaware of where to purchase ethical garments. In Study 2, female undergraduate students (N = 74) were randomly assigned to read about a sweatshop collapse or garment care. Students who read about the disaster chose more ‘sweatshop-free’ garments in a virtual shopping task. All students spent similarly (clothes, accessories, and in general) in the week following the experiment, however. Students may buy ethically-made garments if clearly labelled, but sweatshop information in the media may not affect consumer behaviour. Changes in public policy and education about the human costs of overconsumption are needed. Author Keywords: Decision making, Ethical garments, Ethical purchasing, Materialism, Overconsumption
Functional Genetic Diversity in American Mink (Neovison vison)
The release of domestic organisms to the wild is considered a threat to biodiversity because the introduction of domestic genes through interbreeding can negatively impact wild conspecifics via outbreeding and local extinction. In North America, captive American mink (Neovison vison) are frequently escaping into the wild, yet the impact of these events on the functional genetic diversity of wild mink populations is unclear. I characterized domestic and wild mink in Ontario at 17 trinucleotide microsatellites located in functional genes thought to be associated with traits affected by domestication. I found low functional genetic diversity, as only 4 of 17 genes were variable and of those four there was little evidence of allele frequency differences between domestic and wild mink. Using redundancy analysis and a spatial analysis of principal components on the four variable loci (AR, ATN1, IGF-1, and TOB1) I found no evidence to suggest domestic release events are affecting functional genetic diversity of free-ranging mink at the set of markers assessed. Author Keywords: American mink, domestication, functional gene, introgression, Neovison vison
Evaluating Environmental DNA (eDNA) Detection of Invasive Water Soldier (Stratiotes Aloides)
In 2008, the first North American water soldier (Stratiotes aloides) population was discovered in the Trent River, Ontario. Water soldier is an invasive aquatic plant with sharp, serrated leaves that has the potential to spread rapidly through dispersed vegetative fragments. Although it is too late to prevent water soldier establishment in the Trent River, its local distribution remains limited. In this study, environmental DNA (eDNA) was explored as a potential tool for early detection of water soldier. Species-specific markers were designed from chloroplast DNA regions matK and rbcL, and a qPCR assay with rbcL primers yielded the most sensitive detection of water soldier eDNA. Positive detections were obtained from six of 40 sampling locations, of which five were collected in Seymour Lake, an area with large patches of water soldier. As water soldier plants were known to be present at these sites, high eDNA concentrations were expected. The sixth positive detection from Trent Lock 5 (50 km downstream of Lake Seymour) was unexpected as it was obtained at a site with no water soldier sightings. This is one of the first studies to demonstrate the effectiveness of eDNA detection from aquatic plants. Author Keywords: aquatic plant, eDNA, environmental DNA, invasive species, Stratiotes aloides, water soldier
Ritual, Social Organization, and Monumental Architecture
New archaeological material was discovered in 2006 by the Göksu Archaeological Project in an area of Southeastern Turkey known as Rough Cilicia. This thesis documents and explores the material remains from funerary contexts at the sites of Dağpazarı and Topkaya. Architectural analysis of the material from Dağpazarı demonstrates that the remains are of a monumental temple tomb dating to the late second or early third century A.D. Although the remains from Dağpazarı are fragmentary, the evidence is examined to suggest possible architectural reconstructions. The examination of the Topkaya tomb cluster sheds light upon an ornately decorated rock-cut temple façade tomb dating the Roman period. Both sets of tombs are stunning examples of monumental architecture from the Roman period in an area that suffers from a lack of surviving architectural material. In order to understand the variation in monumental tomb forms the relationship between death, burial, and monumental architecture is examined from a functional perspective. The rites of passage are used as a theoretical framework for examining the functional role that monumental architecture plays in the performance of funerary ritual and the formation of social organization in Roman Rough Cilicia. Ultimately, it is demonstrated that monumental funerary architecture serves as a physical manifestation of abstract concepts that aid in the performance of the rites of passage associated with death and the funeral. Thus, this thesis highlights how abstract information can be gained from seemingly limit physical remains. Author Keywords: Burial, Monumental Funerary Architecture, Rites of Passage, Roman, Rough Cilicia, Social Organization
Studies of the Giardia intestinalis trophozoite cell cycle
To study the Giardia intestinalis cell cycle, counterflow centrifugal elutriation (CCE) was used to separate an asynchronous trophozoite culture into fractions enriched for cells at the different stages of the cell cycle. For my first objective, I characterized the appearance of a third peak (Peak iii) in our flow cytometry analysis of the CCE fractions that initially suggested the presence of 16N cells that are either cysts or the result of endoreplication of Giardia trophozoites. I determined that this third peak consists of doublets of the 8N trophozoites at the G2 stage of the cell cycle that were not removed effectively by gating parameters used in the analysis of the flow cytometry data. In the second objective, I tested the use of a spike with RNA from the GS isolate of Giardia as an external normalizer in RT-qPCR on RNA from CCE fractions and encystation cultures of Giardia from the WB isolate. My results showed that the GS RNA spike is as effective as the use of previously characterized internal normalizer genes for these studies. For the third objective, I prepared two sets of elutriation samples for RNA seq analysis to determine the transcriptome of the Giardia trophozoite cell cycle. I confirmed the results of the cell cycle specific expression of several genes we had previously tested by RT-qPCR. Furthermore, our RNA-seq identified many genes in common with those identified from a microarray analysis of the Giardia cell cycle conducted by a collaborator. Finally, I observed an overall <4 fold change in differentially expressed genes during the G1/S and G2/M phase of the cell cycle. This is a modest change in gene expression compared to 10 - 30 fold changes for orthologous genes in mammalian cell cycles. Author Keywords: Cell cycle, Counterflow Centrifugal Elutriation, Flow Cytometry, RNA-sequencing, RT-qPCR
significance of topographically-focused groundwater recharge during winter and spring on the Oak Ridges Moraine, southern Ontario
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous work has emphasized the importance of depression-focused recharge (DFR) for the timing and location of groundwater recharge to the ORM’s aquifers. However, the significance of DFR has not been empirically demonstrated and the relative control of land cover, topography, and surficial geology on DFR is unclear. The potential for DFR was examined for topographic depressions under forested and open, agricultural land covers with similar soils and surficial geology. Recharge (R) was estimated at the crest and base of each depression during the 2012-13 and 2013-14 winter-spring periods (~December – May) using both a 1-dimensional water balance approach and a surface-applied Br- tracer. At each depression, air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface-water levels were monitored and soil properties (texture, bulk density, porosity, and hydraulic conductivity) were measured. Both forested and agricultural land covers experienced soil freezing; however, concrete frost did not develop in the more porous and conductive forest soils. Concrete frost in agricultural depressions resulted in overland flow, episodic ponding and drainage of rain-on-snow and snowmelt inputs. Recharge was an order-of-magnitude greater at the base of open depressions. Observations of ponding (as evidence of DFR) were made at an additional 14 depressions with varying land cover, geometry, and soil type during the 2014 snowmelt period and measurements of pond depth, pond volume, land cover (i.e., percentage of agricultural vs. forested cover), depression geometry (i.e., contributing area, average slope, relief ratio) and soil texture were made. Ponding was restricted to depressions under mostly agricultural cover and a positive, non-linear relationship between pond volume and average slope was shown for sites with similar land cover and soil texture, but neither pond depth nor volume were related to any other depression characteristics. Results suggest that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention. Author Keywords: Concrete frost, Depression-focused groundwater recharge, Oak Ridges Moraine, Ponding, Topographic depressions, Water balance
effects of particulate matter on the fate and toxicity of silver nanoparticles
As an emerging contaminant, the antimicrobial agent silver nanoparticles (AgNPs) have been receiving considerable attention to determine their potential effects to aquatic ecosystems. However, estimates of aquatic consumer survivorship and other toxicological endpoints vary considerably among experiments, largely due to the environment in which the test takes place. Throughout this thesis I aim to understand which natural environmental variables impact toxicity to the common aquatic consumer Daphnia. I focus on the effects of particulate matter as it may play a role in animal nutrition as well as interact with AgNPs. I explore particulate matter’s effect on survival in the complex matrices including other natural variables that could impact toxicity. I conduct a series of complimentary field and laboratory studies to understand how particles impact AgNP toxicity and how those interactions vary within whole lake ecosystems. Using laboratory studies, I establish that algal particles mitigate the toxic effects of AgNPs on Daphnia survival through removing Ag from the water column and that phosphorus increases this effect. Using wild Daphnia and lake water, I demonstrate the ability of particulate matter to mitigate toxicity in complex natural settings. It was also one of the major predictors of AgNP toxicity to Daphnia along with dissolved organic carbon and daphnid seasonal health. Finally, using a whole lake AgNP addition experiment, I demonstrate that particles and AgNPs interact variably in the lake. Silver from AgNPs binds to particles and is removed to the sediments through the actions of settling particles without impacting the dynamics of living communities. Overall, I am able to demonstrate that the natural components of lake ecosystems, especially particulate matter, are able to mitigate the effects of AgNPs in lake ecosystems to a point where they likely will be never pose a threat to the survivorship of aquatic consumers such as Daphnia. Author Keywords: Daphnia, ecotoxicity, particulate matter, Silver nanoparticles, whole lake experiment

Pages

Search Our Digital Collections

Query

Filter Results

Date

1974 - 2024
(decades)
Specify date range: Show
Format: 2024/04/18