Graduate Theses & Dissertations

Pages

Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles
Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding’s turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding’s turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles’ home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding’s turtles and spotted turtles suggests that these habitats do not automatically constitute “unsuitable habitats” for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles. Author Keywords: Blanding’s turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca
Genomic architecture of artificially and sexually selected traits in white-tailed deer (Odocoileus virginianus)
Understanding the complex genomic architecture underlying quantitative traits can provide valuable insight for the conservation and management of wildlife. Despite improvements in sequencing technologies, few empirical studies have identified quantitative trait loci (QTL) via whole genome sequencing in free-ranging mammal populations outside a few well-studied systems. This thesis uses high-depth whole genome pooled re-sequencing to characterize the molecular basis of the natural variation observed in two sexually selected, heritable traits in white-tailed deer (Odocoileus virginianus, WTD). Specifically, sampled individuals representing the phenotypic extremes from an island population of WTD for antler and body size traits. Our results showed a largely homogenous genome between extreme phenotypes for each trait, with many highly differentiated regions throughout the genome, indicative of a quantitative model for polygenic traits. We identified and validated several potential QTL of putatively small-to-moderate effect for each trait, and discuss the potential for real-world application to conservation and management. Author Keywords: evolution, extreme phenotypes, genetics, genomics, quantitative traits, sexual selection
"Changing our community"
Community-based research (CBR) is a method of discovery that can provide pragmatic methods of advocating for and enabling community change. CBR literature and practice has focused on securing educational and job skills training outcomes for students rather than the communities, and community outcomes CBR and partnership frameworks were truly meant to serve. This research evaluates the effectiveness of a research brokering organization, and the community outcomes that can be meaningfully related back to established partnerships and research. A linked contribution and realist evaluation were employed to consider the contributions of U-Links Centre for Community-Based Research to capacity building in Haliburton County, for host organizations, local municipalities and the public. A community survey (n=65), interviews with past project hosts and management committee members (n=26) anecdotal project exploration, internal document review, and participant observation from living in the region and working within the organization, offers qualitative and quantitative data to support this contribution narrative, while also theorizing key factors for developing projects with high contribution potential. Five key factors were found which can act as both contexts and mechanisms of community-based research mobilization: relevance, relationships, resources, rigour and reach. Author Keywords: capacity building, community, community-based research, contribution analysis, evaluations, research impact
Soil Geochemistry and Normative Mineralogy across Canada
Soils play a crucial role in ecosystem functioning, for example, soil minerals provide important provisioning and regulate ecosystem services. This study used major soil oxides from the North American Soil Geochemical Landscapes Project (n=560) to assess elemental associations and infer soil minerals through exploratory data analysis and to determined quantitative soil mineralogy using a normative method, Analysis to Mineralogy (n=1170). Results showed elemental variability of oxides across the provinces of Canada and strong correlations occurred between elements indicative of soil mineral composition (e.g., Silicon and Aluminium). Principal component analysis inferred soil minerals from soil oxides trends on biplots and classified minerals, generally, as carbonates, silicates, and weathered secondary oxides. Spatial variability in minerals (quartz, plagioclase, potassium feldspar, chlorite, and muscovite) was related to the underlying bedrock geology. The use of Analysis to Mineralogy led to a reliable method of quantifying soil minerals at a large scale. Author Keywords: Analysis to Mineralogy, Exploratory data analysis, Normative procedures, North American Soil Geochemical Landscapes Project, Soil geochemistry, Soil mineralogy
Fish and invertebrate use of invasive Phragmites in a Great Lakes freshwater delta
Invasive Phragmites australis ssp. australis (herein “Phragmites”) has established and rapidly spread throughout many coastal areas of the Great Lakes. Known to displace native vegetation communities as it forms large, monotypic stands, Phragmites has a bad reputation when it comes to losses of biodiversity and habitat provision for wildlife. However, the extent to which Phragmites provides habitat for fish and invertebrates in coastal freshwater wetlands remains relatively unquantified. Thus, this study assessed whether fish assemblages and invertebrate communities in stands of Phragmites differ from those in stands of two native emergent vegetation communities, Typha spp. and Schoenoplectus spp. The findings showed significant differences in habitat variables among the vegetation communities in terms of water depth, macrophyte species richness, stem density and water quality. While abundance of the functional feeding group filterer-collectors was found to be significantly less in stands of Phragmites when compared to Schoenoplectus, no difference was observed in invertebrate taxa richness among vegetation communities. Lastly, no difference in fish assemblage or invertebrate community was detected when using multivariate analyses, implying that invasive Phragmites provides habitat that appears to be as valuable for fish and invertebrates as other emergent vegetation types in the St. Clair River Delta. The findings of this study will ultimately benefit the literature on invasive Phragmites and its role as fish habitat in freshwater wetlands, and aid management agencies in decisions regarding control of the invasive species. Author Keywords: aquatic invasive species, aquatic macroinvertebrates, freshwater fish, freshwater wetlands, nMDS, Phragmites
Syrphidae (Diptera) of northern Ontario and Akimiski Island, Nunavut
Syrphids, also known as hover flies (Diptera: Syrphidae) are a diverse and widespread family of flies. Here, I report on their distributions from a previously understudied region, the far north of Ontario, as well as Akimiski Island, Nunavut. I used samples collected through a variety of projects to update known range and provincial records for over a hundred species, bringing into clearer focus the distribution of syrphids throughout this region. I also analysed a previously un-tested trap type for collecting syrphids (Nzi trap), and report on results of DNA analysis for a handful of individuals, which yielded a potential new species. Author Keywords: Diptera, Ontario, range extension, Syrphidae
Role of Policy in Arctic Food (In)Security
Hunger is a significant concern in Canada, and even more so in the North, with 52% of Inuit adults in Arctic regions experiencing some level of food insecurity in 2012. Policy deficiencies are argued to, at the least, be partly responsible for this issue. This qualitative exploratory project aimed to answer the question: What is the role of food-related policy(ies) in household food security? A review and analysis of policy documents and academic literature at three jurisdictional levels, using the case of food insecurity in Nunavik, Québec, was conducted. The study identified 281 policies facilitating and 139 policies acting as barriers to food security. The highest proportion (27%) of facilitators related to economic accessibility of food and the highest proportion of barriers (93%) related to political accessibility of food. Only one previously identified factor influencing household food security in the region had a corresponding policy barrier associated with it. The study suggests that what is considered ‘food policy’ differs significantly between jurisdictions. Many of the same policies that act to facilitate some aspects of food security act as barriers to others. Policy barriers tend to be difficult to identify by their very nature. As a result, policy plays a complicated role in Nunavik food security status, representing a positive influence in some regards and a negative one in others. Author Keywords: Arctic, Food, Food security, Inuit, Nunavik, Policy
Effect of Nitrosative Stress on Heme Protein Expression and Localization in Giardia Intestinalis
The parasitic protist Giardia intestinalis has five heme proteins: a flavohemoglobin and several isotypes of cytochrome b5. While the flavohemoglobin has a role in counteracting nitric oxide, the functions of the cytochromes (gCYTb5s) are unknown. In this study, the protein level and cellular localization of three gCYTB5 isotypes (gCYTb5-I, II and III) and flavohemoglobin were examined in Giardia trophozoites exposed to three nitrosative stressors at two different concentrations: nitrite (20 mM, 0.5 mM); GSNO (2 mM, 0.25 mM) and DETA-NONOate (2 mM, 0.05 mM). An increase in protein levels was observed for gCYTb5-II with all stressors at both concentrations. However, the effects of these nitrosative stressors on gCYTb5-I and III were inconclusive due to the variation among the replicates and the poor detection of gCYTb5- III on western blots. The protein level of the flavohemoglobin also increased in response to the three stressors at the low concentrations of stressors that were tested. Only the cellular localization of gCYTb5-I changed in response to nitrosative stress, where it moved from the nucleolus to the nucleus and cytoplasm. This response was extremely sensitive and occurred at the lower doses of the three stressors, suggesting that gCYTb5-I may be involved in a nucleolar- based stress response. Author Keywords:
Contemporary adaptive shifts in the physiology and life history of Pumpkinseed (Lepomis gibbosus) introduced into a warm climate
Contemporary evolution has the potential to help limit the biological impact of rapidly changing climates, however it remains unclear whether wild populations can respond quickly enough for such adaptations to be effective. In this thesis, I used the introduction of native North American Pumpkinseed (Lepomis gibbosus) into the milder climate of Europe over 140 years ago, as a 'natural' experiment to test for contemporary evolution to a change in climate in wild populations. In 2008, four outdoor pond colonies were established in central Ontario using adult Pumpkinseed from two native Canadian populations, and two non-native populations from northeastern Spain. By raising native and non-native Pumpkinseed within a common environment, this design minimized the impact of phenotypic plasticity on differential trait expression, and allowed me to interpret differences in the phenotype among pond-reared Pumpkinseed as evidence of genetic differences among populations. I demonstrated that Canadian and Spanish Pumpkinseed have similar thermal physiology except when acclimated to seasonally warm temperatures; trait differences are consistent with Spanish Pumpkinseed being better adapted to a warmer climate. Populations also had similar overwintering ecology, however some differences, such as higher survival under starvation conditions and greater energetic benefits associated with winter feeding, indicated that Canadian populations are better adapted to harsh winter conditions typical of the native range. Finally, I determined that the relatively fast life history expressed in wild European Pumpkinseed is largely driven by plastic responses to the local environment; however, the higher reproductive investment by European populations has a genetic basis. Most climate change research considers taxa that are expected to be negatively impacted by warming: my research demonstrates that even warm-tolerant taxa that are unlikely to experience strong climatic selective forces can respond to a warming environment through evolutionary changes. The potential for adaptive contemporary evolution in warm-tolerant taxa should be taken into account when predicting future ecosystem effects of climate change, and when planning management strategies for species introduced into novel climates. Author Keywords: climate change, contemporary evolution, fish, non-native species, thermal biology, winter ecology
Habitat selection by sympatric Canada lynx (Lynx canadensis) and bobcat (Lynx rufus)
Range expansion by the bobcat (Lynx rufus) may be contributing to range contraction by the Canada lynx (Lynx canadensis), but interactions between them are not well understood. To investigate the potential for competition, I conducted a literature review of hierarchical habitat selection by these two species. I determined that the lynx and the bobcat select different resources at the first and second orders, and that the fourth order is under-studied compared to higher orders. I therefore conducted a snow-tracking study of fine-scale habitat selection by lynx and bobcat in an area of sympatry in northern Ontario. I found that the two species selected similar resources at the fourth order, but appeared to be allopatric at the level of the home range. These results suggest that competition is unlikely to occur between lynx and bobcat, and other factors should be considered as more probable causes of the lynx range contraction. Author Keywords: Bobcat, Canada lynx, Competition, Habitat selection, Scale, Snow tracking
Temporo-spatial patterns of occupation and density by an invasive fish in streams
Since its introduction to North America in the 1990s, the Round Goby has spread throughout the Great Lakes, inland through rivers and is now moving into small tributary streams, a new environment for this species in both its native and invaded ranges. I explored density and temporal occupation of Round Gobies in four small streams in two systems in south-central Ontario, Canada in order to determine what habitat variables are the best predictors of goby density. Two streams are tributaries of Lake Ontario and two are tributaries of the Otonabee River, and all of these streams have barriers preventing upstream migration. I found that occupation and density differed between the systems. In the Otonabee River system, Round Gobies occupy the streams year round and the most important factor determining adult density is distance from a barrier to upstream movement, with the entire stream occupied but density highest next to the barriers. In the Lake Ontario system, density is highest at mid-stream and Round Gobies appear to occupy these streams mainly from spring to fall. Adult density in Lake Ontario tributaries is highest in sites with a high percentage of cobble/boulder and low percentage of gravel substrate, while substrate is less important in Otonabee River tributaries. Occupation and density patterns may differ due to contrasting environmental conditions in the source environments and distance to the first barrier preventing upstream movement. This study shows diversity in invasion strategies, and provides insight into the occurrence and movement patterns of this species in small, tributary streams. Author Keywords: biological invasion, Generalised Additive Mixed Model, habitat, Neogobius melanostomus, Round Goby, stream

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Southeast Asian studies
  • (-) ≠ Anthropology

Filter Results

Date

1979 - 2029
(decades)
Specify date range: Show
Format: 2019/11/19

Author Last Name

Show more

Last Name (Other)

Show more