Graduate Theses & Dissertations

Pages

Demography of a Breeding Population of Whimbrel (Numenius phaeopus) Near Churchill, Manitoba, Canada
I used a GIS raster layer of an area in the Churchill, Manitoba region to investigate the effect of breeding habitat on demography and density of Whimbrel from 2010 through 2013. Program MARK was used to quantify adult and daily nest survival. Apparent annual survival of 0.73 ± 0.06 SE (95% CI = 0.60-0.83) did not significantly differ between sexes or habitats and was lower than expected based on longevity records and estimates for other large-bodied shorebirds. Nest success, corrected for exposure days, was highly variable, ranging from a low of 3% (95% CI = 0-12%) in 2011 to a high of 71% (95% CI = 54-83%) in 2013. The highest rate of nest survival occurred in the spring with the warmest mean temperature. I developed a generalized linear model (GLM) with a negative-binomial distribution from random plots that were surveyed for abundance to extrapolate a local breeding population size of 410 ± 230 SE and density of 3.2 birds per square km ± 1.8 SE. The result of my study suggests that other aspects of habitat not captured by the land cover categories may be more important to population dynamics. Author Keywords: abundance, apparent survival, curlew, land cover map, nest-site fidelity, nest success
Understanding Historical and Contemporary Gene Flow Patterns of Ontario Black Bears
Consequences of habitat loss and fragmentation include smaller effective population sizes and decreased genetic diversity, factors that can undermine the long-term viability of large carnivores that were historically continuously distributed. I evaluated the historical and contemporary genetic structure and diversity of American black bears (Ursus americanus) in Ontario, where bear habitat is largely contiguous, except for southern regions that experience strong anthropogenic pressures. My objectives were to understand gene flow patterns in a natural system still largely reflective of pre-European settlement to provide context for the extent of genetic diversity loss in southern populations fragmented by anthropogenic influences. Phylogeographic analyses suggested that Ontario black bears belong to a widespread "continental" genetic group that further divides into 2 subgroups, likely reflecting separate recolonization routes around the Great Lakes following the Last Glacial Maximum. Population genetic analyses based on individual genotypes showed that Ontario black bears are structured into 3 contemporary genetic clusters. Two clusters, located in the Northwest (NW) and Southeast (SE), are geographically vast and genetically diverse. The third cluster is less diverse, and spatially restricted to the Bruce Peninsula (BP). Microsatellite analyses revealed that the NW and SE clusters are weakly differentiated from each other relative to mitochondrial DNA findings, suggesting male-biased dispersal and isolation by distance across the province. I also conducted simulations to assess competing hypotheses that could explain the reduced genetic diversity on the BP, which supported a combination of low migration and recent demographic bottlenecks. I showed that management actions to increase genetic variation in BP black bears could include restoring landscape connectivity between BP and SE; however, the irreversible human footprint in the area makes regular translocations from SE individuals a more practical alternative. Overall, my work suggests that: 1) historical genetic processes in Ontario black bears were likely predominated by isolation by distance, 2) large mammalian carnivores such as black bears can become isolated and experience reduced diversity in only a few generations, and 3) maintaining connectivity in regions under increased anthropogenic pressures could prevent populations from becoming small and geographically and genetically isolated, and should be a priority for conserving healthy populations. Author Keywords: American black bear, carnivore, conservation genetics, Ontario, phylogeography, population genetics
Reintroducing species in the 21st century
Climate change has had numerous impacts on species' distributions by shifting suitable habitat to higher latitudes and elevations. These shifts pose new challenges to biodiversity management, in particular translocations, where suitable habitat is considered crucial for the reintroduced population. De-extinction is a new conservation tool, similar to reintroduction, except that the proposed candidates are extinct. However, this novel tool will be faced with similar problems from anthropogenic change, as are typical translocation efforts. Using ecological niche modelling, I measured suitability changes at translocation sites for several Holarctic mammal species under various climate change scenarios, and compared changes between release sites located in the southern, core, and northern regions of the species' historic range. I demonstrate that past translocations located in the southern regions of species' ranges will have a substantial decline in environmental suitability, whereas core and northern sites exhibited the reverse trend. In addition, lower percentages (< 50% in certain scenarios) of southern sites fall above the minimal suitability threshold for current and long-term species occurrence. Furthermore, I demonstrate that three popular de-extinction candidate species have experienced changes in habitat suitability in their historic range, owing to climate change and increased land conversion. Additionally, substantial increase in potentially suitable space is projected beyond the range-limits for all three species, which could raise concerns for native wildlife if de-extinct species are successfully established. In general, this thesis provides insight for how the selection of translocation sites can be more adaptable to continued climate change, and marks perhaps the first rigorous attempt to assess the potential for species de-extinction given contemporary and predicted changes in land use and climate. Author Keywords: climate change, de-extinction, ecological niche models, MaxEnt, reintroduction, translocation
Stopover Movement Patterns by Blackpoll and Canada Warblers Across Southeastern Canada During Fall Migration
Stopover ecology is a topic that surges in relevancy as choices made by migrants during stationary periods (stopover sites) may not only have important individuals’ fitness consequences but also can affect population dynamics. I used MOTUS automated telemetry array to study fall stopover duration of Blackpoll Warbler (BLPW) and departure decisions of BLPW and Canada Warbler (CAWA) in relation to various predictors. I affixed radio-transmitters on 55 BLPWs and 32 CAWAs at two banding stations in Ontario in September-October 2014-2015. Radio-tagged individuals were tracked through the MOTUS network across southeastern Canada. I developed models relating age class, fat score, Julian date and stopover movement types to Blackpolls’ stopover duration. I also examined whether there were species-related differences of wind selectivity when resuming migration. No explanatory variable significantly influenced BLPW’s stopover duration. Both species tended to depart under increased tailwind assistance, but with no difference in the effect of wind conditions between the two species. This study provides further evidence supporting the relevance of local wind conditions as a key factor affecting the departure likelihood, especially when migrating birds face an ecological barrier. Author Keywords: Cardellina canadensis, departure decisions, minimum stopover length, MOTUS, overland fall migration, Setophaga striata
Investigating Ecological Niche Differentiation Among Wild Candids Experiencing Hybridization in Eastern North America
Currently there are large areas of the North American landscape that are occupied by Canis spp. hybrids of several varieties, leading to the logical question as to the genetic structure and ecological function of Canis populations across the continent, and to what extent hybrids reflect contemporary landscapes. This study illustrated patterns of niche differentiation between parental canid species and their hybrids using individual high quality genetic profile and species distribution models to support the intermediate phenotype hypothesis. In general, hybrids demonstrated an intermediate habitat suitability compared to its parental species, across most environmental variables used. A similar trend was observed in the niche metric analysis, where we found that hybrids exhibit intermediate niche breadth, with eastern coyotes and eastern wolves exhibiting the broader and narrower niche, respectively. Our results demonstrate that the intermediate phenotype hypothesis is supported even at a large scale and when involving highly mobile large mammal species. Author Keywords: canid, ecological niche modelling, hybridization, intermediate phenotype, microsatellite genotype, niche differentiation
Social thermoregulation and potential for heterothermy
Northern and southern flying squirrels (Glaucomys sabrinus and G. volans, respectively) are experiencing a climate change induced increase in range overlap, resulting in recent hybridization. We investigated the occurrence of heterospecific communal nesting, a potential facilitator of hybridization, and aimed to confirm the presence of torpor, a potential barrier to hybridization, in flying squirrels. In wild-caught captive squirrels, we conducted a paired nest choice experiment and found that heterospecific nesting did occur, but in a lower frequency than conspecific nesting. Ambient temperature did not affect the frequency of grouped nesting. We attempted to induce torpor in flying squirrels in a laboratory through cold exposure while measuring metabolic rate and body temperature. Strong evidence of torpor was not observed, and metabolic rate remained unchanged with season. We conclude that torpor is not a barrier to hybridization in flying squirrels, but resistance to heterospecific nesting may indicate the existence of one. Author Keywords: heterospecific group, hybridization, northern flying squirrel, social thermoregulation, southern flying squirrel, torpor
Moving North
Since their successful reintroduction, the eastern wild turkey (Meleagris gallopavo silvestris) has expanded its range north. Due to different and potentially more severe limiting factors, management approaches generalized from studies within the historical range may not be appropriate to apply to northern populations. To better understand northern wild turkey ecology, GPS and VHF transmitters were used to track habitat selection and survival of female turkeys at the species northern range edge in Ontario, Canada. These northern turkeys exhibited larger seasonal home range sizes relative to those in their historical range, and selected deciduous forest and pasture and fields within the study area. Supplemental food was also selected by turkeys when choosing autumn and winter ranges. The northern turkeys also suffered a low annual survival rate, and high mortality from predation. These findings underscore the challenges of maintaining turkey populations in northern environments, and will help inform management strategies. Author Keywords: Eastern Wild Turkey, Euclidean distance analysis, Habitat selection, Meleagris gallopavo silvestris, Northern range edge, Survival
EXPLORING THE EFFECTS OF WATERPOWER OPERATIONS ON RIVERINE ECOSYSTEMS ACROSS NORTHERN ONTARIO
In this study, we attempt to enhance current knowledge of ecological responses to riverine alterations from waterpower by using a bottom-up food up approach. A series of extensive and intensive study components were performed across northern Ontario, Canada, where biological (nutrients, dissolved organic matter (DOM) and periphyton) and physical (water level and thermal regimes) ecological indicators were examined in regards to alterations from dams and waterpower facilities. Overall, we found that the water levels and thermal regimes deviated from their reference condition at sites below the dams, whereas the biological indicators were more resilient to river alterations. Our results suggest that the characteristics of the watershed were influential in controlling the variability of nutrients and DOM resources in rivers within the boreal watersheds of northern Ontario, as well as the for the downstream recovery patterns of the physical indicators. The recovery of the periphyton communities downstream of the dams were also predicted to be cumulatively related to the physical alterations, nutrient availability and the possible displacement of invertebrate communities. Therefore, our bottom-up food web approach was not effective for better understanding how ecological responses from waterpower cascade through aquatic food webs, and instead multiple indicators should be used for examining the ecological responses in these particular river systems. Author Keywords: dissolved organic matter, ecological indicators, river alteration, waterpower facilities
Enduring Attack
Numerous prey taxa employ defensive postures for protection against attack by predators. Defensive postures mitigate predation risk at various stages of the predator-prey sequence, including through crypsis, mimicry, thanatosis, aposematism, and deflection. In terrestrial salamanders, defensive postures may be aposematic, or deflect attacks away from vital body parts and towards the tail, however the extent to which these strategies act exclusively or synergistically remains poorly understood. Herein I demonstrate a novel approach to study the function of salamander defensive postures through experimental manipulation of predator response to antipredator behaviour in a natural field setting. I deployed 1600 clay salamander prey on Pelee Island, Ontario, manipulating prey size (small, large) and posture (resting, defensive) and documented attack rates across three predator types to further assess the effect of prey body size and predator type on antipredator efficacy. My research suggests that irrespective of prey body size, defensive posture does not function through aposematism, but rather acts to deflect predator attacks to the tail, which is commonly noxious and expendable in terrestrial salamanders. An intriguing possibility is that this behaviour facilitates taste-rejection by predators. Overall, my research should further contribute to our understanding of the importance and potential evolutionary significance of defensive posturing in Ambystoma salamanders, and more broadly, on the determinants of prey vulnerability to predation. I also briefly discuss the implications of my results to the conservation of Ambystoma populations on Pelee Island. Author Keywords: Anti-predator behaviour, Aposematism, Attack deflection, Predator avoidance, Small-mouthed salamander, Taste-rejection
Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behaviour at a Vancouver Island Migratory Stopover Site
Pacific Rim National Park Reserve's 16 km of coastal beaches attract many thousands of people and shorebirds every year. To identify locations where shorebirds concentrate and determine the impact of human activity and habitat characteristics on shorebirds, I conducted shorebird and visitor surveys at 20 beach sectors during fall migration in 2011 to 2013 and spring migration in 2012 and 2013. The probability of shorebird presence decreased with increasing number of people at a beach sector. The time that shorebirds spent at a sector increased with increasing sector width. Close proximity to people increased the proportion of time shorebirds spent moving while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. My findings suggest that placing restrictions on beach access and fast moving activities (e.g., running) may be necessary to reduce shorebird disturbance at Pacific Rim and similar stopover areas. Author Keywords: habitat use, human disturbance, predation risk, prey availability, shorebird, stopover
White-Tailed Fear
The primary method used to maintain white-tailed deer (Odocoileus virginianus) populations at densities that are ecologically, economically, socially, and culturally sustainable is hunter harvest. This method considers only the removal of animals from the population (the direct effect) and does not conventionally consider the costs imposed on deer as they adopt hunter avoidance strategies (the risk effect). The impact of risk effects on prey can exceed that of direct effects and there is interest in applying this concept to wildlife management. Deer are potential candidates as they have demonstrated behavioural responses to hunters. I explored the potential of such a management practice by quantifying how human decisions around hunting create a landscape of fear for deer and how deer alter their space use and behaviour in response. I used a social survey to explore the attitudes of rural landowners in southern and eastern Ontario towards deer and deer hunting to understand why landowners limited hunting on their property. I used GPS tracking devices to quantify habitat selection by hunters and hunting dogs (Canis familiaris) to better understand the distribution of hunting effort across the landscape. I used GPS collars to quantify the habitat selection of deer as they responded to this hunting pressure. I used trail cameras to quantify a fine-scale behavioural response, vigilance, by deer in areas with and without hunting. Human actions created a highly heterogeneous landscape of fear for deer. Landowner decisions excluded hunters from over half of the rural and exurban landscape in southern and eastern Ontario, a pattern predicted by landowner hunting participation and not landcover composition. Hunter decisions on whether to hunt with or without dogs resulted in dramatically different distributions of hunting effort across the landscape. Deer showed a high degree of behavioural plasticity and, rather than adopting uniform hunter avoidance strategies, tailored their response to the local conditions. The incorporation of risk effects into white-tailed deer management is feasible and could be done by capitalizing on a better understanding of deer behaviour to improve current management practices or by designing targeted hunting practices to elicit a landscape of fear with specific management objectives. Author Keywords: Brownian bridge movement models, hunting, landscape of fear, resource utilization functions, risk effects, white-tailed deer
Patterns of Vegetation Succession on Nickel-Copper Mine Tailings near Sudbury, Ontario
Natural establishment of vegetation on mine tailings is generally limited. Understanding the processes leading to vegetation germination and the survival mechanisms that vegetation species employ in these harsh environments is critical to future remediation efforts. As metalliferous mine tailings are generally nutrient-poor, high in harmful metals, and acidic, vegetation species require distinct mechanisms to germinate and survive in such harsh environments. In this study, edaphic and biotic factors linked to vegetation establishment and diversity were studied at two nickel-copper (Ni-Cu) tailings sites near Sudbury, Ontario. One site had experienced minimal treatment, and the second site was split into partial (hand-distribution of lime) and full (lime, fertilizer, seeding) treatment areas. Tailings were generally acidic, low in organic matter and “available” nutrients, and high in metals such as Al, Cu, Fe, and Ni, but these physical and chemical properties were extremely spatially variable. At both sites, vegetation was distributed in sparse patches, with the greatest diversity in treated areas. There was no clear link between metals and vegetation establishment/diversity at the sites. The primary limiting nutrients on the tailings were phosphorous (P) and potassium (K), and while there were areas of increased soil fertility at the sites, they were not clearly associated with increased vegetation diversity. Both traditional ecological succession and nucleation succession patterns were observed on the site, and the chief species associated with nucleation were primary colonizing trees such as B. papyrifera and P. tremuloides. The relationship between B. papyrifera nutrient retranslocation and tailings restoration was assessed and while B. papyrifera at the sites were deficient in P and K, the trees efficiently retranslocated both P and K during senescence. This research can provide insight into possibilities for future revegetation of similar tailings, enabling industry to make educated decisions when choosing where and how to revegetate, mimicking natural succession patterns. Author Keywords: Acid-mine drainage, Betula papyrifera, ecosystem health, metals, Sudbury, tailings

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Master of Arts
  • (-) = Ecology

Filter Results

Date

2003 - 2023
(decades)
Specify date range: Show
Format: 2023/01/31

Degree Discipline