Graduate Theses & Dissertations

Effects of wood ash addition on soil chemical properties and sugar maple (Acer saccharum, Marsh.) seedling growth in two northern hardwood forest sites in central Ontario
One possible solution to acidification and losses of base cations in central Ontario forest soils may be the application of wood ash. Wood ash is generally high in pH and contains large amounts of calcium (Ca) and other nutrients essential for ecosystem health, however it also contains trace metals. Understanding the chemistry of soils following ash application to forests is crucial for future policy recommendations and remediation efforts. In this study, soil and soil water chemistry was measured at two acidic forest sites in central Ontario. Sugar maple (Acer saccharum, Marsh.) seedling growth and chemistry, as well as understory vegetation composition, were also measured. At site one, plots (2 m x 2 m) were established with sugar maple, white pine (Pinus strobus L.) and yellow birch (Betula alleghaniensis Britt.) residential wood ash treatments and applied at rates of 0 and 6 Mg ha-1. The effects of residential wood ash on soil and understory vegetation were measured three- and 12-months following ash addition. At site two, plots (5 m x 5 m) were established with both fly and bottom industrial grade bark ash treatments of 0, 4 and 8 Mg ha-1 (n=4), and tension lysimeters were positioned in each plot at 30, 50, and 100 cm depths. The effects of industrial grade wood ash on soil, soil water and understory vegetation were measured four years following ash addition. Metal concentrations in the ashes were generally low but were higher in the fly ash and yellow birch ash types. At site one, significant increase in soil pH, and Ca and magnesium (Mg) concentrations were observed after three months, however changes varied by treatment. Some metal concentrations increased in the upper organic horizons, but metals were likely immobilized in the soil due to increases in soil pH, electrical conductivity (EC) and high organic matter content of the soil. After one year, changes to metal concentrations in soils could be seen in mineral horizons, and a few metals (aluminum (Al), zinc (Zn), copper (Cu), chromium (Cr), strontium (Sr)) increased in treatment plots. At site two, the effects of industrial-grade bark ashes on soil pH could still be seen after four years and soil water metal concentrations were not elevated relative to controls. Changes to understory vegetation composition following ash application were observed, but ash addition had no significant effect on sugar maple seedling growth (root:shoot ratio) and did not lead to significant increases in foliar metal concentrations. There were significant differences in root chemistry, suggesting metal translocation and uptake could be restricted. Mass balance estimates indicate that the organic horizon is a sink for all metals and simulated drought in this horizon led to a decrease in soil pH and increase in soil water metal concentration, but this occurred in all treatments including control. These results suggest that application of industrial and residential wood ash in moderate doses with trace metal concentrations below or near regulatory limits will increase soil pH and base cation concentrations, as well as increase seedling tissue nutrient concentrations in northern hardwood forest soils. However, depending on the parent material of the ash, increased metal availability can also occur. Author Keywords: Acer saccharum, calcium decline, forest soil amendment, Haliburton Forest and Wildlife Reserve, heavy metal, wood ash

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Conolly
  • (-) ≠ Bowman
  • (-) ≠ Master of Arts
  • (-) = Biogeochemistry
  • (-) = Deighton, Holly

Filter Results


2011 - 2021
Specify date range: Show
Format: 2021/04/11

Author Name


Degree Discipline

Subject (Topic)