Graduate Theses & Dissertations

Novel Aliphatic Amides from Vegetable Oils as Bio-Based Phase Change Materials
Energy storage efficiency and sustainability require advanced technologies and novel materials. Recently, bio-based phase change materials (PCMs) have received significant attention for thermal energy storage (TES) uses. Vegetable oils are versatile renewable feedstocks that are well suited for the development of sustainable, functional PCMs. PCMs derived from vegetable oil, which compares favorably with paraffin waxes, the industry standard, are currently available. However, their melting points are typically below 80 °C preventing their wider integration in TES applications, particularly those requiring higher temperatures. The present work manipulated the structural building blocks of fatty acids to advantageously affect the intermolecular forces and increase the properties relevant to TES. The polar amide functional group was incorporated into fatty moieties to take advantage of the strong hydrogen bonds that it forms to increase intermolecular attractions and hence increase the phase change temperature and enthalpy as well as to improve thermal stability and thermal conductivity. A series of carefully designed lipid-derived monoamides and four series of lipid-derived diamides were synthesized via benign and simple amidation reactions. The purity of the amides and the intermolecular hydrogen bond strength were assessed using 1H NMR and FTIR. The properties relevant to TES such as thermal transition, crystal structure and polymorphism, thermal stability and thermal conductivity were measured using DSC, XRD, TGA and a thermal conductivity analyzer, respectively. The complex roles of the PCM’s constituting molecular building blocks in the phase behavior were elucidated and correlations between structure, processing conditions and macroscopic physicochemical properties, never before elucidated, were assembled in predictive relationships, drawing a unified picture of the rules that generally govern the phase behavior of lipid-derived PCMs. Practically, the prepared amides demonstrated desirable TES properties with substantial performance improvement over current bio-based PCMs. They presented increased phase change temperatures (79 - 159 °C), enthalpies of fusion (155 - 220 J/g) and thermal stability (234 - 353 °C). More importantly, the predictive structure-function relationships established in this work will allow the straightforward engineering of lipid-derived amide PCM architectures with judicious selection of molecular building blocks to extend the range of organic PCMs and deliver thermal properties desirable for TES applications. Author Keywords: LATENT HEAT THERMAL ENERGY STORAGE, LIPID-DERIVED AMIDES, PHASE CHANGE MATERIALS, RENEWABLE, SOLID LIQUID AMIDE PCMS, THERMAL PROPERTIES
Novel Functional Materials From Renewable Lipids
Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit melting temperatures between 39 °C and 77 °C, with latent heats greater than 220 J/g; much greater than paraffin waxes, which are currently the industry standard. Assessment of the trends between differing monomer lengths, in terms of number of CH2 groups of the 24 diesters synthesized exhibited structure/function dependencies in latent heat values and phase change temperatures, providing an understanding of the influence of each monomer on PCM thermal properties. A synthetic procedure was developed to produce these PCMs from a low value biodiesel feedstock. Application of these PCMs in the thermoregulation of hot beverages was demonstrated using a representative diester. This PCM cooled a freshly brewed hot beverage to a desired temperature within 1 minute, compared to 18 minutes required for the control. Furthermore, the PCM kept the beverage within the desired temperature range for 235 minutes, 40 % longer than the control. Author Keywords: Antimicrobial Surface, Click Chemistry, Green Chemistry, Phase Change Material, Polytriazole, Renewable

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Morrison
  • (-) ≠ Canadian studies
  • (-) ≠ Indigenous Studies
  • (-) = Materials Science
  • (-) = Energy

Filter Results


2011 - 2021
Specify date range: Show
Format: 2021/03/05

Subject (Topic)