Graduate Theses & Dissertations

Mitigating Cold Flow Problems of Biodiesel
The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most effective when the right molecular structure and optimal concentration are provided. The cocktail mixture achieves then tiny crystals that are prevented from aggregating for an extended temperature range. The results of the study can be directly used for the design of functional and economical CFI from vegetable oils and their derivatives. Author Keywords: Biodiesel, Microstructure, Polymorphism, Pour point depressants, Triacylglycerol, Vegetable Oil Based Crystal Modifier

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Morrison
  • (-) ≠ Canadian studies
  • (-) ≠ Indigenous Studies
  • (-) = Materials Science
  • (-) = Mohanan, Athira

Filter Results


2011 - 2021
Specify date range: Show
Format: 2021/03/08

Name (Any)

Degree Discipline

Subject (Topic)