Graduate Theses & Dissertations

Interactome Study of Giardia Intestinalis Cytochromes B5
Giardia intestinalis is an anaerobic protozoan that lacks common eukaryotic heme-dependent respiratory complexes and does not encode any proteins involved in heme biosynthesis. Nevertheless, the parasite encodes several hemeproteins, including three members of the Type II cytochrome b5 sub-group of electron transport proteins found in anaerobic protist and amitochondriate organisms. Unlike the more well-characterized cytochrome b5s of animals, no function has been ascribed to any of the Type II proteins. To explore the functions of these Giardia cytochromes (gCYTB5s), I used bioinformatics, immunofluorescence microscopy (IFM) and co-immunoprecipitation assays. The protein-protein interaction in silico prediction tool, STRING, failed to identify relevant interacting partners for any of the Type II cytochromes b5 from Giardia or other organisms. Differential cellular localization of the gCYTB5s was detected by IFM: gCYTB5-I in the perinuclear space; gCYTB5-II in the cytoplasm with a staining pattern similar to peripheral vacuole-associated protein; and gCYTB5-III in the nucleus. Co-immunoprecipitation with the gCYTB5s as bait identified potential interacting proteins for each isotype. The most promising candidate is the uncharacterized protein GL50803_9861, which was identified in the immunoprecipitate of both gCYTB5-I and II, and which co-localizes with both. Structural analysis of GL50803_9861 using Swiss Model, Phyre2, I-TASSER and RaptorX predicts the presence of a nucleotide-binding domain, which is consistent with a potential redox role involving nicotinamide or flavin-containing cofactors. Finally, the protein GL50803_7204 which contains a RNA/DNA binding domain was identified a potential partner of gCYTB5-III. These findings represent the first steps in the discovery of the roles played by these proteins in Giardia. Author Keywords: Cytochrome b5, Giardia intestinalis, Heme, Interactome, Protein structure prediction
Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin
The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine’s role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket. Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis
Electrochemical Characterization of Giardia Intestinalis Cytochromes b5
Giardia intestinalis is a protozoan parasite that causes waterborne diarrheal disease in animals and humans. It is an unusual eukaryote as it lacks the capacity for heme biosynthesis; nonetheless it encodes heme proteins, including three cytochrome b5 isotypes (gCYTB5s) of similar size. Homology modelling of their structures predicts increased heme pocket polarity compared to mammalian isotypes, which would favour the oxidized state and lower their reduction potentials (E°’). This was confirmed by spectroelectrochemical experiments, which measured E°’ of -171 mV, -140 mV and -157 mV for gCYTB5-I, II, III respectively, compared to +7 mV for bovine microsomal cytochrome b5. To explore the influence of heme pocket polarity in more detail, five gCYTB5-I mutants in which polar residues were replaced by nonpolar residues at one of three positions were investigated. While these substitutions all increased the reduction potential, replacement of a conserved tyrosine residue at position-61 with phenylalanine had the most significant effect, raising E°’ by 106 mV. This tyrosine residue occurs in all gCYTB5s and is likely the greatest contributor to their low reduction potentials. Finally, complementary substitutions were made into a bovine microsomal cytochrome b5 triple mutant to lower its reduction potential. These not only lowered the E°’ by more than 140 mV but also weakened the interaction of heme with the protein. The lower reduction potentials of the gCYTB5s may indicate that these proteins have different roles from their more well-known mammalian counterparts. Author Keywords:
Natural antisense transcripts to nucleus-encoded mitochondrial genes are linked to Ustilago maydis teliospore dormancy
Ustilago maydis is a basidiomycete smut fungus and the causal agent of common smut of corn. Disease progression and fungal development in this pathogen occur in planta, terminating in the production of dormant teliospores. Dormant spores of many fungi are characterized by reduced metabolic activity, which is restored during spore germination. The transition out of dormancy requires the rapid translation of stored mRNAs, which may be stabilized through natural antisense transcript (NAT)-mediated mechanisms. Transcript analysis revealed that as-ssm1, a NAT to the mitochondrial seryl-tRNA synthetase (ssm1), is detected in the dormant teliospore and absent in haploid cells. Disruption of ssm1 leads to cell lysis, indicating it is essential for cellular viability. Presented data supports the hypothesis that as-ssm1 has a role in facilitating teliospore dormancy through stabilizing ssm1 transcripts, which reduces mitochondrial function. as-ssm1 expression during in planta development begins 10 days post-infection, coinciding with the first appearance of dormant teliospores. To assess the impact of as-ssm1 expression on cell division, virulence and mitochondrial function, as-ssm1 was ectopically expressed in haploid cells, leading to increased ssm1 transcript levels and the formation of double-stranded RNA. These expression mutants are characterized by attenuated growth rate, virulence, mitochondrial membrane potential and oxygen consumption. Together, these findings support a role for NATs in moderating mitochondrial function during the onset of teliospore dormancy. Author Keywords: Dormant teliospore, Mitochondria, mRNA stability, Natural antisense transcripts, Non-coding RNA, Ustilago maydis

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Morrison
  • (-) ≠ Holdsworth
  • (-) = Saville
  • (-) ≠ Kyle
  • (-) = Rafferty

Filter Results


2010 - 2020
Specify date range: Show
Format: 2020/01/17

Author Last Name

Last Name (Other)

Degree Discipline