Graduate Theses & Dissertations


Changes to the Arctic and sub-Arctic climate are becoming increasingly evident as it warms faster than other areas of the globe, supporting evidence that predictions of future warming will be amplified due to positive feedback mechanisms. The Southern Hudson Bay polar bear (Ursus maritimus) subpopulation is one of the most southerly subpopulations in the world, putting it at increased risk due to effects of climate change. Whereas many other subpopulations have been the subject of intense research and monitoring, little research has been completed detailing the movement behaviour and space use of bears within Southern Hudson Bay. I used detailed movement data collected on female polar bears to establish a baseline of movement information for this subpopulation to which future work can be compared and effects of climate change can be assessed I evaluated the use of core areas during critical periods of the year (breeding and ice breakup) and evaluated common space use as a means of assessing site fidelity during the breeding season. Movement rates and home range sizes were comparable to those of the neighbouring Western Hudson Bay subpopulation. I also found evidence of increased occurrences of long distance, late fall movements along the coast to the northwest, presumably to gain earlier access to first ice. Though space use analysis did not reveal evidence of site fidelity to specific breeding areas in Hudson Bay, I found that core use areas are at risk of substantially shortened ice duration (x¯ =76 days shorter) using projected ice data based on the high emissions A2 climate change scenario. Author Keywords: climate change, Hudson Bay, movement, polar bear, sea ice, utilization distribution
Patterns of Vegetation Succession on Nickel-Copper Mine Tailings near Sudbury, Ontario
Natural establishment of vegetation on mine tailings is generally limited. Understanding the processes leading to vegetation germination and the survival mechanisms that vegetation species employ in these harsh environments is critical to future remediation efforts. As metalliferous mine tailings are generally nutrient-poor, high in harmful metals, and acidic, vegetation species require distinct mechanisms to germinate and survive in such harsh environments. In this study, edaphic and biotic factors linked to vegetation establishment and diversity were studied at two nickel-copper (Ni-Cu) tailings sites near Sudbury, Ontario. One site had experienced minimal treatment, and the second site was split into partial (hand-distribution of lime) and full (lime, fertilizer, seeding) treatment areas. Tailings were generally acidic, low in organic matter and “available” nutrients, and high in metals such as Al, Cu, Fe, and Ni, but these physical and chemical properties were extremely spatially variable. At both sites, vegetation was distributed in sparse patches, with the greatest diversity in treated areas. There was no clear link between metals and vegetation establishment/diversity at the sites. The primary limiting nutrients on the tailings were phosphorous (P) and potassium (K), and while there were areas of increased soil fertility at the sites, they were not clearly associated with increased vegetation diversity. Both traditional ecological succession and nucleation succession patterns were observed on the site, and the chief species associated with nucleation were primary colonizing trees such as B. papyrifera and P. tremuloides. The relationship between B. papyrifera nutrient retranslocation and tailings restoration was assessed and while B. papyrifera at the sites were deficient in P and K, the trees efficiently retranslocated both P and K during senescence. This research can provide insight into possibilities for future revegetation of similar tailings, enabling industry to make educated decisions when choosing where and how to revegetate, mimicking natural succession patterns. Author Keywords: Acid-mine drainage, Betula papyrifera, ecosystem health, metals, Sudbury, tailings
Evaluating the effects of landscape structure on genetic differentiation and diversity
The structure and composition of the landscape can facilitate or impede gene flow, which can have important consequences because genetically isolated groups of individuals may be prone to inbreeding depression and possible extinction. My dissertation examines how landscape structure influences spatial patterns of genetic differentiation and diversity of American marten (Martes americana) and Canada lynx (Lynx canadensis) in Ontario, Canada, and provides methodological advances useful for landscape geneticists. First, I identified the effects of map boundaries on estimates of landscape resistance, and proposed a solution to the bias: a buffer around the map boundary. Second, I assessed the sensitivity of a network-based estimate of genetic distance, conditional genetic distance, to incomplete sampling. I then used these landscape genetic tools in a pairwise, distance-based analysis of 653 martens genotyped at 12 microsatellite loci. I evaluated whether forest management in Ontario has influenced the genetic structure of martens. Although forest management practices had some impact, isolation by distance best described marten gene flow. Our results suggest that managed forests in Ontario are well connected for marten and do not impede marten gene flow. Finally, I used a site-based analysis of 702 lynx genotyped at 14 microsatellite loci to investigate spatial patterns of genetic diversity and differentiation at the trailing (contracting) edge of the lynx distribution in Ontario. I analyzed harvest records and found that the southern edge of lynx range has contracted by >175 km since the 1970s. I also found that neutral genetic diversity decreased towards the trailing edge, whereas genetic differentiation increased. Furthermore, I found strong correlations between gradients of lynx genetic structure and gradients of climate and land cover in Ontario. My findings suggest that increases in winter air temperature, decreases in snow depth, and loss of suitable habitat will result in further loss of genetic diversity in peripheral populations of lynx. Consequently, the adaptive potential of lynx populations on the southern range periphery could decline. In conclusion, my dissertation demonstrates the varying influences that contemporary landscape structure and climate gradients can have on genetic diversity and differentiation of different species. Author Keywords: Circuitscape, genetic network, landscape genetics, Lynx canadensis, Martes americana, range shift
Evidence for hybrid breakdown in the cattail (Typha) hybrid swarm in southern Ontario
Heterosis, expressed as phenotypic superiority over parental species, typically peaks in first generation hybrids (F1s), while later generations (F2 +) exhibit lower fitness. The decrease in hybrid fitness is called hybrid breakdown. The overall incidence of hybrid breakdown in invasive hybrid zones remains poorly understood. The Laurentian Great Lakes (LGL) region contains a hybrid zone comprised of: native Typha latifolia, Typha angustifolia, and hybrid Typha × glauca. F1 T. × glauca display heterosis and are invasive, while later generation hybrids are relatively rare. To investigate possible hybrid breakdown, I compared seed germination and plant growth of backcrossed and advanced-generation (F2) hybrids to F1s and T. latifolia. I found evidence for hybrid breakdown in F2s and backcrossed hybrids, expressed as reduced growth and germination rates. Expression of hybrid breakdown in F2s and backcrosses may explain their relative rarity in the LGL hybrid zone. Author Keywords: Advanced-generation hybrids, Backcrossed hybrids, Hybridization, introgression, Invasive species, plant competition
effects of heat dissipation capacity on avian physiology and behaviour
In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds. Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch
Diversity, Biogeography, and Functional Traits of Native Bees from Ontario’s Far North and Akimiski Island, Nunavut
Bees (clade Anthophila), are poorly studied in northern Canada, as these regions can be difficult to access and have a short growing season. This study examined bees from two such regions: Ontario’s Far North, and Akimiski Island, Nunavut. I present this study as the largest biogeographical study of bees performed in these remote areas to enhance knowledge of northern native bees. I found 10 geographically unexpected species in Ontario and on Akimiski Island. Rarefaction and the Chao 1 Diversity Index showed that Akimiski is nearly as diverse as the Far North of Ontario, a significantly larger area. I also found, based on log femur length versus latitude, Bombus worker size was consistent with Bergmann’s rule, and there were no apparent statistical differences in the community weighted means of functional traits between the Far North’s Boreal Shield and Hudson Bay Lowlands ecozones. This work provides invaluable knowledge of the native bee species from these regions, which has implications for their future conservation. Author Keywords: Akimiski Island, Bergmann's rule, Chao 1, Community-weighted means, native bees, rarefaction
Social thermoregulation and potential for heterothermy
Northern and southern flying squirrels (Glaucomys sabrinus and G. volans, respectively) are experiencing a climate change induced increase in range overlap, resulting in recent hybridization. We investigated the occurrence of heterospecific communal nesting, a potential facilitator of hybridization, and aimed to confirm the presence of torpor, a potential barrier to hybridization, in flying squirrels. In wild-caught captive squirrels, we conducted a paired nest choice experiment and found that heterospecific nesting did occur, but in a lower frequency than conspecific nesting. Ambient temperature did not affect the frequency of grouped nesting. We attempted to induce torpor in flying squirrels in a laboratory through cold exposure while measuring metabolic rate and body temperature. Strong evidence of torpor was not observed, and metabolic rate remained unchanged with season. We conclude that torpor is not a barrier to hybridization in flying squirrels, but resistance to heterospecific nesting may indicate the existence of one. Author Keywords: heterospecific group, hybridization, northern flying squirrel, social thermoregulation, southern flying squirrel, torpor
Long-Term Population Dynamics of an Unexploited Lacustrine Brook Trout (Salvelinus fontinalis) Population
Long-term studies of demographic processes such as survival and abundance conducted in unexploited systems provide unique insight into the natural population ecology of fish, but are rarely available. I used historical tagging records of a sanctuary population of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario to investigate long-term population dynamics in an unexploited population. Adult brook trout in Mykiss Lake (23.5ha) were surveyed and tagged biannually (May and October) between 1990 and 2004. Open-population capture-mark-recapture models were used to test the importance of time, size, sex and season on estimates of apparent survival and abundance. Seasonal population growth and recruitment were estimated and compared with large-scale climate indices. Time-dependent survival and abundance estimates fluctuated, with distinct periods of increase. Population growth and recruitment were positively correlated with summer NAO and ENSO values, whereas survival was negatively correlated. Seasonally, larger individuals experienced higher apparent survival during winter and decreased survival during summer. These findings provide valuable insights into the natural demography of unexploited brook trout populations, and should help inform sustainable management of inland fisheries. Author Keywords: capture-mark-recapture, long-term, population dynamics, Salvelinus fontinalis, seasonal variation, survival
Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)
The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism’s ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes. Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion
Elemental Variation in Daphnia
Environmental variation can affect consumer trait expression and alter ecological and evolutionary dynamics in natural populations. However, although dietary nutrient content can vary by an order of magnitude in natural ecosystems, intra-specific differences in consumer responses to food quality have not been thoroughly investigated. Therefore, the purpose of my dissertation was to examine the influence of dietary nutrition and other environmental factors on consumer phenotypic variation using the freshwater cladoceran Daphnia. I conducted a series of complementary laboratory and field studies where I examined the effects of dietary phosphorus (P) content and additional biological/environmental variables (multi-elemental limitation, genetic variation, and temperature) on daphnid life-history, biochemistry, body elemental composition, and population growth. In general, phenotypic expression within a species varied significantly in response to all experimental variables, but the relative influence of each was highly context dependent. In my first chapter, I found that dietary P content and environmental calcium (Ca) concentrations both altered Daphnia body Ca:P ratios and growth rates of individuals and affected intrinsic rates of increase at the population level. However, food quality appeared to have a much larger effect on trait expression, and body Ca:P ratios were highly sensitive to other forms of dietary nutrient limitation. Next, I documented significant quantitative genetic variation and phenotypic plasticity in daphnid P content, growth, and P use efficiency of field collected animals grown across dietary P gradients. Trait expression was also influenced by genotype X diet interactions suggesting that consumer responses to dietary nutrient limitation can be heritable and may be adaptive in different nutrient environments. Finally, I found that temperature appeared to override food quality effects and decouple P metabolism in natural Daphnia populations, but total biomass production was affected by both dietary P content and temperature, depending on the nutrient content of the lake. Overall, my dissertation shows that consumer responses to nutrient limitation can vary significantly within a species and that changes in trait expression may be modified by other environmental variables. These results should be incorporated into existing stoichiometric models and used to investigate the eco-evolutionary consequences of consumer phenotypic variation in response to nutritional stress. Author Keywords: ecological stoichiometry, evolution, life-history, nutrient limitation, nutrient metabolism, zooplankton
Habitat use within and among roosts of chimney swifts (Chaetura pelagica)
Chimney swifts are listed as Threatened nationally and in many provinces within Canada due to rapid population declines. I examined large-scale spatial variation in the maximum size of chimney swift roosts at the northern edge of their range to identify where larger roosts occur. I used multi-sourced data collected across Ontario and Quebec between 1998 and 2013. I found that larger roosts were found at more northerly latitudes, and that very large roosts (>1000 birds) only occurred north of 45°. I also investigated fine-scale patterns of chimney swift positioning inside one of the largest roosts in Ontario. Using digitally recorded images, I calculated the angular position of swifts inside the roost relative to ambient and roost temperature. I found that swifts showed a strong preference for clinging to the south facing wall and clustered more when ambient air temperature was warmer. Thus, huddling in swifts provides additional or alternate benefits, other than serving purely to reduce costs of thermoregulation at low ambient temperatures. This research contributes to the understanding of chimney swift roosting ecology and identifies large roosting sites that should be retained for conservation. Author Keywords: chimney swift, communal roosting, conservation, group size, social thermoregulation, species-at-risk
Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)
Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct. Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Master of Arts
  • (-) = Ecology

Filter Results


2012 - 2032
Specify date range: Show
Format: 2022/08/16

Degree Discipline