Graduate Theses & Dissertations


origin and ecological function of an ion inducing anti-predator behaviour in Lithobates tadpoles
Chemical cues are used commonly by prey to identify predation risk in aquatic environments. Previous work has indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in tadpoles. This thesis found that this ion species: (i) is produced by injured tadpoles; (ii) exhibits increased spectral intensity with higher tadpole biomass; and (iii) is not produced by starved predators. These results refute the hypothesis that the ion is a kairomone, and rather support its role as an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S-. Collision induced dissociation (CID) of ion m/z 501 formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, indicating the presence of sulfate. Green frog (Lithobates clamitans) tadpoles exposed to m/z 501, and an industrial analogue, sodium dodecyl sulphate (NaC12H25O4S), exhibited similar anti-predator responses, thereby suggesting the potential role of organic sulfate as a tadpole behavioural alterant. Author Keywords: Alarm cue, Amphibian, Chemical Ecology, Mass spectrometry, Predator-prey interactions
effects of Dissolved Organic Matter (DOM) sources on Pb2+, Zn2+ and Cd2+ binding
Metal binding to dissolved organic matter (DOM) determines metal speciation and strongly influences potential toxicity. The understanding of this process, however, is challenged by DOM source variation, which is not always considered by most existing metal speciation models. Source determines the molecular structure of DOM, including metal binding functional groups. This study has experimentally showed that the allochthonous-dominant DOM (i.e. more aromatic and humic) consistently has higher level of Pb binding than the autochthonous-dominant DOM (i.e. more aliphatic and proteinaceous) by more than two orders of magnitude. This source-discrimination, however, is less noticeable for Zn and Cd, although variation still exceeds a factor of four for both metals. The results indicate that metal binding is source-dependent, but the dependency is metal-specific. Accordingly, metal speciation models, such as the Windermere Humic Aqueous Model (WHAM), needs to consider DOM source variations. The WHAM input of active fraction of DOM participating in metal binding (f) is sensitive to DOM source. The commonly-used f = 0.65 substantially overestimated the Pb and Zn binding to autochthonous-dominant DOM, indicating f needs to be adjusted specifically. The optimal f value (fopt) linearly correlates with optical indexes, showing a potential to estimate fopt using simple absorbance and/or fluorescence measurements. Other DOM properties not optically-characterized may be also important to determine fopt, such as thiol, which shows strong affinity to most toxic metals and whose concentrations are appreciably high in natural waters (< 0.1 to 400 nmol L-1). Other analytical techniques rather than Cathodic Stripping Voltammetry (CSV) are required to accurately quantify thiol concentration for DOM with concentration > 1 mg L-1. To better explain the DOM-source effects, the conditional affinity spectrum (CAS) was calculated using a Fully Optimized ContinUous Spectrum (FOCUS) method. This method not only provides satisfactory goodness-of-fit, but also unique CAS solution. The allochthonous-dominant DOM consistently shows higher Pb affinity than autochthonous-dominant DOM. This source-discrimination is not clearly observed for Zn and Cd. Neither the variability of affinity nor capacity can be fully explained by the variability of individual DOM properties, indicating multiple properties may involve simultaneously. Together, the results help improve WHAM prediction of metal speciation, and consequently, benefit geochemical modelling of metal speciation, such as Biotic Ligand Model for predicting metal toxicity. Author Keywords: Dissolved organic matter, Metal binding, Source, Windermere Humic Aqueous Model
Temporal Variability of Coloured Dissolved Organic Matter in the Canada Basin, Arctic Ocean (2007-2017)
This thesis investigated coloured and fluorescent dissolved organic matter in the Canada Basin, Arctic Ocean from 2007 to 2017. The first interannual time-series of its kind in the Canada Basin incorporated the use of EEM-PARAFAC to validate a seven-component model. Statistical temporal tests revealed (1) an increasing protein-like intensity in the upper polar mixed layer (UPML); (2) increasing intensities of humic-like components in the halocline due to increasing freshwater content; and (3) no change in DOM composition in deeper Atlantic waters (AW) congruent with the long residence time of the water mass (> 30 years). The significant decline in sea ice concentration was related to a decrease in humic-like FDOM due to enhanced photodegradation and an increase in protein-like FDOM, likely the results of increased biological activities in surface layers. This research provides evidence that the changes in physical and biological environment in the Arctic regions have already profound impacts on the composition and distribution of FDOM. Author Keywords: absorbance, Arctic Ocean, dissolved organic matter, fluorescence, parallel factor analysis, time-series
Supercritical Water Chemistry
Supercritical water (SCW) exhibits unique properties that differentiates it from its low temperature behaviour. Hydrogen bonding is dramatically reduced, there is no phase boundary between liquid and gaseous states, heat capacity increases, and there is a drastic reduction of the dielectric constant. Efforts are underway for researchers to harness these properties in the applications of power generation and hazardous waste destruction. However, the extreme environment created by the high temperatures, pressures and oxidizing capabilities pose unique challenges in terms of corrosion not present in subcritical water systems. Molecular Dynamics (MD) simulations have been used to obtain mass transport, hydration numbers and the influence on water structure of molecular oxygen, chloride, ammonia and iron (II) cations in corrosion crevices in an iron (II) hydroxide passivation layer. Solvation regimes marking the transitions of solvation based versus charge meditated processes were explored by locating the percolation thresholds of both physically and hydrogen bonded water clusters. A SCW flow through reactor was used to study hydrogen evolution rates over metal oxide surfaces, metal release rates and the kinetics for the oxidation of hydrogen gas by oxygen in SCW. Insights into corrosion phenomena are provided from the MD results as well as the experimental determination of flow reactor water and hydrogen chemistry. Author Keywords: Flow Studies, Molecular Dynamics, Supercritical Water
Research and development of synthetic materials for presumptive testing in bloodstain pattern analysis
Chemical presumptive tests are used as the primary detection method for latent bloodstain evidence. This work focuses on developing a forensic blood substitute which mimics whole blood reactivity to a luminol solution commonly used in presumptive testing. Designing safe and accessible materials that mimic relevant properties of blood is a recognized research need in forensic science. Understanding the whole blood dynamics related to reactivity with presumptive testing chemicals is important for developing accurate analogues. Provided in this thesis is a quantitative and qualitative characterization of photoemission from the reaction of a luminol solution to ovine blood. Luminol reactivity of a horseradish peroxidase encapsulated sol-gel polymer was validated against this ovine blood standard. This material, the luminol-reactive forensic blood substitute, is a key deliverable of this research. An optimized protocol for implementing this technology as a reagent control test, and as a secondary school chemistry experiment are presented. This thesis outlines the research and development of a forensic blood substitute as it relates to presumptive testing in bloodstain pattern analysis. Author Keywords: bloodstain pattern analysis, forensic science, luminol, presumptive testing, secondary school education, sol-gel chemistry
Relationships between Dissolved Organic Matter and Vanadium Speciation in the Churchill River, MB and the Mackenzie River Basin, NWT using diffusive gradients in thin films (DGT)
This study examines the influence of dissolved organic matter (DOM) on dissolved vanadium (V) speciation in the Churchill River and Great Slave Lake using diffusive gradients in thin film (DGT). Vanadium is commonly found in natural environments such as rivers, lakes and oceans. It regulates normal cell growth, but in excessive amounts, it can have toxic effects on human and aquatic organisms. The use of in situ, time integrated DGT devices allows to better (1) monitor the most bioavailable fraction of V, the DGT-labile V, in Arctic Rivers and (2) assess the influence of DOM on dissolved V speciation. Higher DGT-labile V was found in the the central regions of the Mackenzie River (MR), with an average of 7.7 ± 2.3 nM, likely due to sediment leaching and permafrost thawing. The Churchill River and Great Slave Lake (GSL) showed lower DGT-labile V levels (2.2 ± 1.6 nM and 3.6 ± 2.7 nM, respectively), compared to central regions in MR. The CR DGT-labile V concentrations was positively correlated to protein-like DOM concentration and abundance (r = 0.3, p < 0.05). The data collected from this study will help in developing new strategies regarding environmental health and impact assessments of environmentally hazardous waste that consist of potentially high levels of toxic vanadium species. Developments in the use of DGT devices as a sampling method will also aid in future studies involved in analyzing environmental health and specifically dissolved V species in natural waters. Author Keywords: diffusive gradients in thin-films, dissolved organic matter, fluorescence, mass spectrometry, UV-Vis, vanadium
Novel Aliphatic Lipid-Based Diesters for use in Lubricant Formulations
Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects. Author Keywords: Crystallization, Phase behaviour, Rheology, Structure-Function, Thermogravimetric analysis, Vegetable Oils
Monitoring and fate of selected tire-derived organic contaminants
Road runoff is a vector for the transport of potentially toxic chemicals into receiving waters. In this study, selected tire-derived chemicals were monitored in surface waters of rivers adjacent to two high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples were collected from the Don River and Highland Creek in the GTA during 5 hydrological events that occurred in the period between early October 2019 and late March 2020, as well as an event in August 2020. Grab samples were collected from these rivers during a period of low flow in August 2020, as well as during a storm event in July of 2020. Analysis was performed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection (UHPLC-HRMS). Hexamethoxymethylmelamine (HMMM), a cross-linker of tire material, was detected at elevated concentrations (> 1 µg/L) during rain events in the fall and winter of 2019-20 and during a period of rapid snow melt in early March of 2020. These samples were also analyzed for the tire additive, 6PPD, and its oxidation by-product, 6PPD-quinone, as well as 1,3-diphenylguanidine (DPG). In many samples collected from the Don River and Highland Creek during storm events, the estimated concentrations of 6PPD-quinone exceeded the reported LC50 of 0.8 µg/L for Coho salmon exposed to this compound. Temporal samples collected at 3-hour intervals throughout rain event the October 2020 showed that there was a delay of several hours after the start of the event before these compounds reached their peak concentrations. In addition, 26 candidate transformation products and precursor compounds of HMMM were monitored; 15 of these compounds were detected in surface waters in the GTA. The maximum total concentration of this class of methoxymethylmelamine compounds in surface water samples was estimated to be 18 µg/L. There is limited knowledge about the properties of HMMM, its precursor contaminants, and its transformation compounds, as well as their fate in the environment. COSMO-RS solvation theory was used to estimate the physico-chemical properties of HMMM and its derivatives. Using the estimated values for these properties (e.g., solubility, vapour pressure, log Kow) as inputs to the Equilibrium Criterion (EQC) fugacity-based multimedia model, the compounds were predicted to readily partition into aqueous media, with mobility in water increasing with the extent of loss of methoxymethyl groups from HMMM. Overall, this study contributes to the growing literature indicating that potentially toxic tire-wear compounds are transported via road runoff into urban surface waters. In addition, this study provides insight into the environmental behaviour of HMMM and its transformation products. Author Keywords: 6PPD-quinone, COSMOtherm, Fugacity, Hexamethoxymethylmelamine, Road runoff, Tire wear
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish Alena Kathryn Davidson Celsie A novel dynamic fugacity model is developed that simulates the uptake of chemicals in fish by respiration as applies in aquatic toxicity tests. A physiologically based toxicokinetic model was developed which calculates the time-course of chemical distribution in four tissue compartments in fish, including metabolic biotransformation in the liver. Toxic endpoints are defined by fugacity reaching a 50% mortality value. The model is tested against empirical data for the uptake of pentachloroethane in rainbow trout and from naphthalene and trichlorobenzene in fathead minnows. The model was able to predict bioconcentration and toxicity within a factor of 2 of empirical data. The sensitivity to partition coefficients of computed whole-body concentration was also investigated. In addition to this model development three methods for predicting partition coefficients were evaluated: lipid-fraction, COSMOtherm estimation, and using Abraham parameters. The lipid fraction method produced accurate tissue-water partitioning values consistently for all tissues tested and is recommended for estimating these values. Results also suggest that quantum chemical methods hold promise for predicting the aquatic toxicity of chemicals based only on molecular structure. Author Keywords: COSMOtherm, fish model, fugacity, Partition coefficient, tissue-water, toxicokinetics
Fingerprinting of dissolved organic matter and copper ligands in the Canadian Arctic and North Pacific Ocean
Dissolved organic matter (DOM) in oceans provides nutrients and ultraviolet radiation protection to microbes. Some DOM compounds can chelate with metals, including copper, controlling their transport and bioavailability in marine systems. As copper functions as both a nutrient and toxicant, studies into the chemical structures of Cu-ligands is important, however currently limited. In this thesis, the chemical composition of total and Cu-binding DOM is investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the Canadian Arctic and North Pacific. Chapter 2 reveals chemical differences in DOM composition between the southern and northern Canada Basin, revealing the influence of terrestrial and biological sources. Chapter 3 shows the uniqueness of Cu-binding ligands found in the Canadian Arctic and North Pacific Ocean. Studying the composition of DOM gives insight into the chemical diversity of marine DOM, helping to predict the effects of a changing climate on marine ecosystems. Author Keywords: biological, dissolved organic matter, fluorescence, immobilized metal-ion affinity chromatography, mass spectrometry, terrestrial
Extraction and Characterization of Hyaluronic Acid and Collagen from Eggshell Membrane Waste
Connecting academia to industry is one important way to advance towards meeting the United Nations (UN) Sustainability Goals (SDGs).1 Sustainability can be applied to all industrial sectors with the SDGs being implemented by 2030.2 This research contributes to the SDGs by investigating a way to remediate an industrial waste stream in the egg-breaking industry. If adopted, this would reduce the amount of eggshell membrane (ESM) waste placed in landfill where it does not decompose properly. The work described in this thesis specifically targets extraction of collagen and hyaluronic acid (HA), two components of the ESM that are of commercial value in the cosmetic, pharmaceutical, and biomedical industries3,4 . Deliverables from this research include economically viable extraction methods, developed based on green chemistry approaches, that can be transferred from lab bench to industrial scale. The extraction development process was guided by the 12 Principles of Green Chemistry5,6,7 and the 12 Principles of Green Engineering.8 HA was most successfully extracted using a sodium acetate solution on ground ESM. Filtrate was collected, exhaustively dialyzed and lyophilized. High molecular weight HA was recovered. Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and proton nuclear magnetic resonance (NMR) spectroscopy compared extracted material to reference HA identifying successful extraction. Collagen was extracted using acetic acid or pepsin enzyme digestion. Hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry (MS) compared amino acid composition of extracted materials to reference collagen material. FTIR-ATR spectra also supported successful extraction of collagen. This work identifies that HA and collagen can be conveniently extracted from ESM using an economical approach that can be implemented into egg-breaking facilities. This work highlights the benefits of connecting academia to industry to advance green chemical approaches while implementing sustainable practices into existing industry. Author Keywords: collagen, eggshell membrane waste, extraction, green chemistry, hyaluronic acid, sustainability
Electrochemical Biosensors for Neurodegenerative Disease Biomarkers
The onset of neurodegenerative diseases such as Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) are typically characterised by the aggregation of protein biomarkers into cytotoxic fibrils. Novel means of analysing these biomarkers are needed to expand the literature toward earlier diagnosis of these conditions. Electrochemical sensors could offer the sensitivity and selectivity needed for specialised analysis, including potential point-of-care applications. The AD biomarker Tau, and ALS biomarker TDP-43 proteins are explored here by using a label-free electrochemical sensors. Tau protein was covalently bound to gold electrode surface to study the in vitro mechanisms of aggregation for this protein. An immunosensor to TDP-43 was developed by covalently binding primary TDP-43 antibodies (Abs) on gold electrode surface. A novel direct ELISA sensor for TDP-43 with visual detection and electrochemical quantification was also developed. The results validated the experimental designs toward specialised and selective analysis of these biomarkers and their aggregation mechanisms. Author Keywords: ALS, Alzheimer's, Biosensors, Electrochemistry, Tau, TDP-43


Search Our Digital Collections


Enabled Filters

  • (-) = Chemistry

Filter Results


2012 - 2022
Specify date range: Show
Format: 2022/10/07