Graduate Theses & Dissertations

Pages

Spatial Dynamics of Wind Pollination in Broadleaf Cattail (Typha latifolia)
Natural populations of flowering plants rarely have perfectly uniform distributions, so trends in pollen dispersal should affect the size of the pollination neighbourhood and influence mating opportunities. Here I used spatial analysis to determine the size of the pollination neighbourhood in a stand of the herbaceous, wind-pollinated plant (Typha latifolia; broad-leaved cattail) by evaluating patterns of pollen production and seed set by individual cattail shoots. I found a positive correlation between pollen production and seed set among near-neighbour shoots (i.e., within 4 m2 patches of the stand; Pearson's r = 0.235, p < 0.05, df = 77) that was not driven by a correlation between these variables within inflorescences (Pearson's r = 0.052, p > 0.45, df = 203). I also detected significant spatial autocorrelations in seed set over short distances (up to ~ 5 m) and a significant cross-correlation between pollen production and seed set over distances of < 1 m indicating that the majority of pollination events involve short distances. Patterns of pollen availability were simulated to explore the shape of the pollen dispersal curve. Simulated pollen availability fit actual patterns of seed set only under assumptions of highly restricted pollen dispersal. Together, these findings indicate that even though Typha latifolia produces copious amounts of pollen, the vast majority of pollen dispersal was highly localized to distances of ~ 1 m. Moreover, although Typha latifolia is self-compatible and has been described as largely selfing, my results are more consistent with the importance of pollen transfer between nearby inflorescences. Therefore, realized selfing rates of Typha latifolia should largely depend on the clonal structure of populations. Author Keywords: clonal structure, correlogram, dispersal curves, pollination, spatial analysis, Typha latifolia
Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft, Ontario, Canada
ABSTRACT Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft Ontario, Canada. Michael R. Allan Parturition site selection by ungulates is believed to be influenced by forage abundance and concealment from predators. In 2011 and 2012, I used vaginal implant transmitters and movements to identify calving sites for 23 GPS collared elk (Cervus elaphus) from a restored herd. I tested the hypothesis that maternal elk used sites with higher forage and denser concealment compared to pre-calving sites at micro and macrohabitat levels. I detected no significant microhabitat differences from direct measurements of vegetation. At the macrohabitat scale, based on proximity of landcover classes, mean distances to hardwood forests was significantly less for calving (153 m) than pre-calving sites (198 m). Site fidelity is hypothesized to offer security in terms of familiarity to an area. I tested the hypothesis that females demonstrated fidelity to their previous year's location during pre-partum, parturition, post partum, breeding and winter periods. Elk were more philopatric during parturition and post partum than during breeding. Compared to winter elk were more philopatric during pre-partum, parturition and post-partum periods. Expressed as distance between consecutive-year calving locations, site fidelity varied with 27% of females exhibiting high (<1 km), 18% moderate and 55% (>2.9 km) low fidelity. I measured nearest-neighbour distances at calving time, exploring the hypothesis that females distance themselves from conspecifics. Elk increased the average distances to collared conspecifics during parturition; however, sample sizes were small. This strategy might influence calving site selection. Rapid movement prior to parturition, low site fidelity and spacing-out of females during parturition appear to be strategies to minimize predator risk and detection. Little evidence of selection for vegetation structure suggests this may not be limiting to these elk. Author Keywords: calving, elk, fidelity, movement, parturition, selection
Shorebird Stopover Ecology and Environmental Change at James Bay, Ontario, Canada
I examined how shorebirds respond to environmental change at a key subarctic migratory bird stopover site, the southwestern coast of James Bay, Ontario, Canada. First, I investigated if the morphology of sandpipers using James Bay during southbound migration has changed compared to 40 years prior. I found shorter, more convex and maneuverable wings for sandpipers in the present-day compared to the historical monitoring period, which supports the hypothesis that wing length change is driven by increases in predation risk. Secondly, I assessed the relationship between migration distance, body condition, and shorebird stopover and migratory decisions. Species that travelled farther distances from James Bay to wintering areas migrated with more characteristics of a time-minimizing migration strategy whereas species that travelled shorter distances migrated with energy minimizing strategies. Body condition impacted length of stay, wind selectivity at departure, groundspeeds, and probability of stopover and detection in North America after departing James Bay. Thirdly, I examined annual variation in dry/wet conditions at James Bay and found that shorebirds had lower body mass in years with moderate drought. In the present-day, drought resulted in lower invertebrate abundance and refuelling rates of shorebirds during stopover, which led to shorter stopover duration for juveniles and a higher probability of stopover outside of James Bay for all groups except white-rumped sandpiper. Finally, I estimated the relative importance of intertidal salt marsh and flat habitats to the diets of small shorebirds and found that semipalmated and white-rumped sandpiper (Calidris pusilla and C. fuscicollis) and semipalmated plover (Charadrius semipalmatus) diets consist of ~ 40 – 75% prey from intertidal marsh habitats, the highest documented in the Western Hemisphere for each species. My research shows that James Bay is of high importance to white-rumped sandpipers, which are unlikely to stop in North America after departing James Bay en route to southern South America. Additionally, intertidal salt marsh habitats (and Diptera larvae) appear particularly important for small shorebirds in the region. My thesis shows that changing environmental conditions, such as droughts, can affect shorebird refuelling and stopover strategies. Author Keywords: body condition, diet, environmental change, migration, ornithology, stopover ecology
Stoichiometric food quality affects responses of Daphnia to predator-derived chemical cues
While both resource quality and predator-derived chemical cues can each have profound effects on zooplankton populations and their function in ecosystems, the strength and nature of their interactive effects remain unclear. We conducted laboratory experiments to evaluate how stoichiometric food quality (i.e., algal carbon (C):phosphorus (P) ratios) affects responses of the water flea, Daphnia pulicaria, to predator-derived chemical cues. We compared growth rates, body elemental content, metabolic rates, life history shifts, and survival of differentially P-nourished Daphnia in the presence and absence of chemical cues derived from fish predators. We found effects of predator cues and/or stoichiometric food quality on all measured traits of Daphnia. Exposure to fish cues led to reduced growth and increased metabolic rates, but had little effect on the elemental content of Daphnia. Elevated algal C:P ratios reduced growth and body %P, increased respiration, and increased body %C. Most of the effects of predator cues and algal C:P ratios of Daphnia were non-interactive. In contrast, the declines in daphnid survival and related population growth rates that arose because of poor food quality were amplified in the presence of predator-derived cues. Our results demonstrate that stoichiometric food quality interacts with anti-predator responses of Daphnia, but these effects are trait-dependent and appear connected to animal life-history evolution. Author Keywords: Daphnia, ecological stoichiometry, indirect predator effects, life history, phosphorus, predator-prey relationships
Habitat Preferences and Feeding Ecology of Blackfin Cisco (Coregonus nigripinnis) in Northern Algonquin Provincial Park
Blackfin Cisco (Coregonus nigripinnis), a deepwater cisco species once endemic to the Laurentian Great Lakes, was discovered in Algonquin Provincial Park in four lakes situated within a drainage outflow of glacial Lake Algonquin. Blackfin habitat preference was examined by analyzing which covariates best described their depth distribution using hurdle models in a multi-model approach. Although depth best described their distribution, the nearly isothermal hypolimnion in which Blackfin reside indicated a preference for cold-water habitat. Feeding structure differentiation separated Blackfin from other coregonines, with Blackfin possessing the most numerous (50-66) gill rakers, and, via allometric regression, the longest gill rakers and lower gill arches. Selection for feeding efficiency may be a result of Mysis diluviana affecting planktonic size structure in lakes containing Blackfin Cisco, an effect also discovered in Lake Whitefish (Coregonus clupeaformis). This thesis provides insight into the habitat preferences and feeding ecology of Blackfin and provides a basis for future study. Author Keywords: allometric regression, blackfin cisco, habitat, hurdle models, lake whitefish, mysis
Constraints on phenotypic plasticity in response to predation risk
Inducible defenses are plastic responses by an organism to the perception of predation risk. This dissertation focuses on three experiments designed to test the hypothesis that plastic ability is limited by energetic constraints. Chapter 1 provides a general introduction to phenotypic plasticity research and the theoretical costs and limitations affecting the expression of plastic traits. In Chapter 2, I tested the hypothesis that costs of early plasticity may be manifested by a reduced response to risk in later life stages. I found that amphibian embryos are able to detect and respond to larval predators, but that the energetic cost of those plastic responses are not equivalent among behavioural, growth, and morphological traits, and their expression differs between closely-related species. Chapter 3 explicitly examines the relationship between food resource availability and plasticity in response to perceived predation risk during larval development. Food-restricted tadpoles showed limited responses to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. Chapter 4 examines the influence of maternal investment into propagule size on the magnitude of the plastic responses to predation risk in resulting offspring. I found that females in better body condition laid larger eggs and that these eggs, in turn, hatched into larvae that showed greater morphological plasticity in response to predation risk. Maternal investment can therefore affect the ability of offspring to mount morphological defenses to predation risk. Last, Chapter 5 provides a synthesis of my research findings, identifying specific factors constraining the plastic responses of prey to perceived predation risk. Overall, I found constraints on plastic responses imposed by the current environment experienced by the organism (resource availability), the prior experience of the organism (predator cues in the embryonic environment), and even the condition of the previous generation (maternal body condition and reproductive investment). Together, these findings both provide new knowledge and create novel research questions regarding constraints limiting phenotypic variation in natural populations. Author Keywords: behaviour, inducible defense, Lithobates pipiens, morphometrics, phenotypic plasticity, predation risk
Seasonal habitat use and movement of native brook trout (Salvelinus fontinalis) in urban headwater streams
Coldwater streams are becoming increasingly impacted due to urbanization. Using environmental surveys, mark-recapture and telemetry, I assessed factors influencing seasonal brook trout (Salvelinus fontinalis) habitat use and movement in urban headwater streams in central Ontario between 2017-18. Generalized additive models were used to assess which habitat variables best explained seasonal yearling and older brook trout abundance, while generalized least squares models were used to assess overall trends in radio-tagged brook trout movement. My research demonstrated dynamic patterns in habitat use and movement by urban stream-dwelling brook trout. Yearlings were primarily influenced by water quality (stream temperature, conductivity), while older brook trout were most strongly influenced by stream morphology (depth, undercut bank). Movement occurred disproportionately around the spawning season and was more limited in the smaller, more altered stream. These findings may be used to inform fisheries managers on crucial timing and location of brook trout habitat refugia within urbanized environments. Author Keywords: Brook trout, coldwater stream, groundwater, habitat use, radiotelemetry, urbanization
mechanistic analysis of density dependence in algal population dynamics
Population density regulation is a fundamental principle in ecology, however there remain several unknowns regarding the functional expression of density dependence. One prominent view is that the patterns by which density dependence is expressed are largely fixed across a species, irrespective of environmental conditions. Our study investigated the expression of density dependence in Chlamydomonas reinhartti grown under a gradient of nutrient densities, and hypothesized that the relationship between per capita growth rate (pgr) and population density would vary from concave-up to concave-down as nutrients became less limiting. Contrary to prediction, we found that the relationship between a population's pgr and density became increasingly concave-up as nutrient levels increased. Our results suggest that density dependence is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density regulation depends extensively on local conditions. Population growth suppression may be attributable to environments with high intraspecific competition. Additional work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time. Author Keywords: Chlamydomonas reinhartti, density dependence, logistic model, population dynamics, single species growth, theta-logistic equation
Enhancing post-mortem interval estimates
The growth of immature insects that develop on human remains can be used to estimate a post-mortem interval (PMI). PMI estimate confidence is negatively affected by: larval killing and preservation methods altering their size, limited morphological parameters to assess larval growth and therefore age, and few available alternate species development data. I compared live specimens to preserved specimens of the same development stages to assess the effects of killing-preservation techniques on morphology, and I introduce a new method that uses digital photography to examine maggot mouthparts for stage grading of Phormia regina. Digital photographic methods enable live insects to be quantified and improve approximations of physiological age. I then use these digital methods to produce a growth-rate model for a beetle commonly found on human remains, Necrodes surinamensis, providing data for PMI estimates that was previously unavailable. Author Keywords: Forensic Entomology, Insect development, Morphometrics, Necrodes surinamensis, Phormia regina, Postmortem interval
Nunavik Inuit Knowledge of Beluga
Socio-ecological systems are inherently complex and marine mammals are fundamentally challenging to study. In the Arctic, marine mammals occupy a central ecological role, as nutrient cyclers and as a source of food and culture for Indigenous peoples. Inuit have developed a rich knowledge system, which has not been fully actualized in application in most Arctic research. Considering the need for the best available information in marine mammal ecology, the research question guiding this dissertation was: How can multiple methods and approaches be used to more effectively gather, understand, and represent Inuit Knowledge for an improved understanding of marine mammal ecology? The dissertation investigates this question using a case study of beluga in Nunavik (Arctic Quebec) drawing on the expertise of hunters and Elders to better understand complex questions in marine mammal ecology. The thesis uses a transdisciplinary approach to address the dissertation objective and is comprised of a general introduction, followed by four chapters formatted as journal manuscripts, and closes with an integrated discussion and conclusion. The first manuscript examines the contributions of Traditional Ecological Knowledge (TEK) of beluga to marine mammal literature. The second manuscript uses a sub-set of data gathered through participant mapping to apply a mapping method to explore how the spatial aspects of TEK could be better documented, analyzed, and represented. The third and fourth papers are based on the knowledge shared by hunters and Elders. The third explores the questions ‘why do beluga migrate?’ and ‘what factors influence beluga movement?’. The fourth investigates aspects of beluga foraging ecology. This dissertation makes methodological contributions through the application of kernel density estimators to participant maps as a method for transforming multiple mapped narratives into a quantitative database. The understandings shared by hunters and Elders make significant ecological contributions, particularly to foraging (e.g. diet composition and seasonal energy intake), and movement ecology (e.g. potential drivers of migration). Broadly these findings contribute to our collective understanding of beluga ecology and have implications for wildlife management. Author Keywords: Arctic, Beluga biology, foraging ecology, Inuit Knowledge, migration, transdisciplinary
Bank Swallow (Riparia riparia) Breeding in Aggregate Pits and Natural Habitats
I examined Bank Swallow (Riparia riparia) colony persistence and occupancy, in lakeshore, river and man-made aggregate pit habitat. Habitat persistence was highest on the lakeshore and lowest in aggregate pits, likely due to annual removal and relocation of aggregate resources. Bank Swallow colonies in aggregate pit sites were more likely to persist if a colony was larger or if burrows were located higher on the nesting face. I also compared nest productivity and health factors of Bank Swallows in lakeshore and aggregate pit habitats. While clutch size was the same in both habitat types, the number of fledglings from successfully hatched nests was significantly higher in aggregate pit sites than from lakeshore sites. Mass of fledgling Bank Swallows did not differ significantly between habitat types, however mass of adults from aggregate pits decreased significantly over the nesting season. Parasite loads on fledgling Bank Swallows were significantly lower in aggregate pits than in lakeshore sites. According to these indicators, aggregate pits appear to provide equivalent or higher quality habitat for Bank Swallows than the natural lakeshore sites, making them adequate and potentially key for this species’ recovery. Aggregate pit operators can manage for swallows by (1) creating longer, taller faces to attract birds and decrease predation, and (2) supplementing their habitat with water sources to encourage food availability. Author Keywords: Aerial insectivore, aggregate pits, Bank Swallow, colony persistence, ectoparasites, substitute habitat
Characterization of a Zn(II)2Cys6 transcription factor in Ustilago maydis and its role in pathogenesis
Ustilago maydis (D.C.) Corda is a biotrophic pathogen that secretes effectors to establish and maintain a relationship with its host, Zea mays. In this pathosystem, the molecular function of effectors is well-studied, but the regulation of effector gene expression remains largely unknown. This study characterized Zfp1, a putative U. maydis Zn(II)2Cys6 transcription factor, as a modulator of effector gene expression. The amino acid sequence of Zfp1 indicated the presence of a GAL4-like zinc binuclear cluster as well as a fungal specific transcription factor domain. Nuclear localization was confirmed by tagging Zfp1 with enhanced green fluorescent protein. Deletion of zfp1 resulted in attenuated hyphal growth, reduced infection frequency, an arrest in pathogenic development, and decreased anthocyanin production. This phenotype can be attributed to the altered transcript levels of genes encoding predicted and confirmed U. maydis effectors in the zfp1 deletion strain during pathogenic growth. Complementation of zfp1 deletion strain with tin2, an effector involved in anthocyanin induction, suggested this effector is downstream of Zfp1 and its expression is influenced by this transcription factor during in planta growth. When wild-type zfp1 was ectopically inserted in the zfp1 deletion strain, pathogenesis and virulence were partially restored. This, coupled with zfp1 over-expression strains having a similar phenotype as the deletion strains, suggested Zfp1 may interact with other proteins for full function. These findings show that Zfp1, in conjunction with one or more binding partners, contributes to U. maydis pathogenesis, virulence, and anthocyanin production through the regulation of effector gene expression. Author Keywords: effector, pathogenesis, transcription factor, Ustilago maydis, Zea mays, zinc finger

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Beresford
  • (-) = Biology

Filter Results

Date

2011 - 2021
(decades)
Specify date range: Show
Format: 2021/03/02

Degree Discipline