Graduate Theses & Dissertations

Historic Magnetogram Digitization
The conversion of historical analog images to time series data was performed by using deconvolution for pre-processing, followed by the use of custom built digitization algorithms. These algorithms have been developed to be user friendly with the objective of aiding in the creation of a data set from decades of mechanical observations collected from the Agincourt and Toronto geomagnetic observatories beginning in the 1840s. The created algorithms follow a structure which begins with pre-processing followed by tracing and pattern detection. Each digitized magnetogram was then visually inspected, and the algorithm performance verified to ensure accuracy, and to allow the data to later be connected to create a long-running time-series. Author Keywords: Magnetograms
Predicting Irregularities in Arrival Times for Toronto Transit Buses with LSTM Recurrent Neural Networks Using Vehicle Locations and Weather Data
Public transportation systems play important role in the quality of life of citizens in any metropolitan city. However, public transportation authorities face criticisms from commuters due to irregularities in bus arrival times. For example, transit bus users often complain when they miss the bus because it arrived too early or too late at the bus stop. Due to these irregularities, commuters may miss important appointments, wait for too long at the bus stop, or arrive late for work. This thesis seeks to predict the occurrence of irregularities in bus arrival times by developing machine learning models that use GPS locations of transit buses provided by the Toronto Transit Commission (TTC) and hourly weather data. We found that in nearly 37% of the time, buses either arrive early or late by more than 5 minutes, suggesting room for improvement in the current strategies employed by transit authorities. We compared the performance of three machine learning models, for which our Long Short-Term Memory (LSTM) [13] model outperformed all other models in terms of accuracy. The error rate for LSTM model was the lowest among Artificial Neural Network (ANN) and support vector regression (SVR). The improved accuracy achieved by LSTM is due to its ability to adjust and update the weights of neurons while maintaining long-term dependencies when encountering new stream of data. Author Keywords: ANN, LSTM, Machine Learning
Representation Learning with Restorative Autoencoders for Transfer Learning
Deep Neural Networks (DNNs) have reached human-level performance in numerous tasks in the domain of computer vision. DNNs are efficient for both classification and the more complex task of image segmentation. These networks are typically trained on thousands of images, which are often hand-labelled by domain experts. This bottleneck creates a promising research area: training accurate segmentation networks with fewer labelled samples. This thesis explores effective methods for learning deep representations from unlabelled images. We train a Restorative Autoencoder Network (RAN) to denoise synthetically corrupted images. The weights of the RAN are then fine-tuned on a labelled dataset from the same domain for image segmentation. We use three different segmentation datasets to evaluate our methods. In our experiments, we demonstrate that through our methods, only a fraction of data is required to achieve the same accuracy as a network trained with a large labelled dataset. Author Keywords: deep learning, image segmentation, representation learning, transfer learning

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Doctor of Philosophy
  • (-) ≠ Business education
  • (-) ≠ English (Public Texts)
  • (-) = Computer science
  • (-) ≠ McKenna-Neuman
  • (-) ≠ Chambers

Filter Results


2010 - 2030
Specify date range: Show
Format: 2020/05/24

Author Last Name

Last Name (Other)


Subject (Topic)