Graduate Theses & Dissertations

Impact of Wetland Disturbance on Phosphorus Loadings to Lakes
Total phosphorus (TP) concentrations have declined in many lakes and streams across south- central Ontario, Canada over the past three decades and changes have been most pronounced in wetland-dominated catchments. In this study, long-term (1980-2007) patterns in TP concentrations in streams were assessed at four wetland-dominated catchments that drain into Dickie Lake (DE) in south-central Ontario. Two of the sub-catchments (DE5 and DE6) have particularly large wetland components (31-34 % of catchment area), and wetlands are characterised by numerous standing dead trees and many young live trees (18 – 27 year old). These two streams exhibited large peaks in TP and potassium (K) export in the early 1980s. In contrast, TP and K export from DE8 and DE10 (wetland cover 19 – 20 %) were relatively flat over the entire record (1980-2007), and field surveys indicated negligible standing dead biomass in these wetlands, and a relatively healthy, mixed-age tree community. Furthermore, K:TP ratios in the DE5 and DE6 streams were around 5 in the early 1980s; very similar to the K:P ratio found in biomass, and as stream TP levels fell through the 1980s, K:TP ratios in DE5 and DE6 stream water increased. The coincidence of high TP and K concentrations in the DE5 and DE6 streams as well as evidence of a disturbance event in their wetlands during the early 1980s suggest that the two are related. The diameter of standing dead trees and allometric equations were used to estimate the amount of TP that would have been held in readily decomposed tree tissues in the DE5 wetland. The amount of P that would have been held in the bark, twig, root and foliage compartments of just the standing dead trees at DE5 was approximately half of the amount of excess stream TP export that occurred in the 1980s. This work suggests that disturbance events that lead to wetland tree mortality may contribute to patterns in surface water TP observed in this region. Author Keywords: Chemistry, Disurbance, Nutrients, Tree Death, Water, Wetland
Phosphorus deposition in forested watersheds
Phosphorus (P) is an essential macronutrient. In south-central Ontario, foliar P concentrations are low and studies have suggested that P may be limiting forest productivity. Current catchment mass balance estimates however, indicate that P is being retained suggesting that P should not be limiting to tree growth. Phosphorus deposition is measured using bulk deposition collectors, which are continuously open and therefore are subject to contamination by pollen and other biotic material with high P and potassium (K) concentrations and may therefore overestimate net P inputs to forested catchments. Average annual TP and K deposition at three long-term (1984 – 2013) monitoring sites near Dorset, Ontario ranged from 15 to 20 mg·m-2y-1 and 63 to 85 mg·m-2y-1, respectively, and was higher at Paint Lake compared with Plastic Lake and Heney Lake. Phosphorus and K in bulk precipitation were strongly positively correlated, but deposition patterns varied spatially and temporally among the three sites. Total phosphorus and K deposition increased significantly at Plastic Lake and decreased significantly at Paint Lake, but there was no significant trend in TP or K deposition at Heney Lake over the 30 year period. All sites, but especially Paint Lake, exhibited considerable inter-annual variation in TP and K deposition. To quantify the contribution of pollen, which represents an internal source of atmospheric P deposition, Durham pollen collectors during the spring and summer of 2014 were used. The three sites, Paint Lake, Heney Lake, and Plastic Lake had pollen deposition amounts of 5202 grains·cm-2, 7415 grains·cm-2, and 12 250 grains·cm-2, respectively in 2014. Approximately 83% of pollen deposition can be attributed to white pine and red pine that has a concentration of 3 mg·g-1 of P. It was estimated that pollen alone could account for up to one-third of annual bulk P deposition. Extrapolating winter P deposition values to exclude all potential biotic influences (insects, bird feces, leaves), indicates that bulk deposition estimates may double actual net P to forests, which has implications for long-term P availability, especially in harvested sites. Author Keywords: Atmospheric Deposition, Phosphorus, Pine, Pollen, Potassium, South-Central Ontario
Phosphorus forms and response to changes in pH in acid-sensitive soils on the Precambrian Shield
Catchment soil acidification has been suggested as a possible mechanism for reducing phosphorus (P) loading to surface waters in North America and northern Europe, but much of the research that has been conducted regarding P immobilization in pH manipulated soils has been performed at high P concentrations (> 130 μM). This study investigated how soil acidity was related to P fractionation and P sorption at environmentally relevant P concentrations to evaluate the potential influence of long term changes in soil pH on P release to surface waters. Total phosphorus (TP) concentrations declined between 1980 and 2000 in many lakes and streams in central Ontario; over the same time period forest soils in this region became more acidic. Soils were collected from 18 soil pits at three forested catchments with similar bedrock geology but varying TP export loads. The soil pH at the 18 study soil pits spanned the historic soil pH range, allowing for `space for time' comparison of soil P factions. Soils were analysed by horizon for P fractions via Hedley P fractionation. Batch P sorption experiments were performed on selected B-horizon soils at varied solution pH. Soil P fractions varied by horizon but were comparable among the three catchments, with only apatite (PHCl) differing significantly across catchments. Contrary to expectation, both soluble and labile P showed negative relationships with pH in some horizons. Mineral soils were able to sorb almost all (> 90 %) of the P in solution at environmentally relevant P concentrations (4.5 - 45.2 μM). Phosphorus sorption at environmentally relevant P concentrations was unrelated to solution pH but at high P concentration there was a positive relationship between P sorption and solution pH, suggesting a P concentration dependant P sorption mechanism. Phosphorus budgets indicate that P is accumulating within catchments, suggesting that P is being immobilized in the terrestrial environment. An alternative hypothesis, which attempts to explain both the decline in stream TP export and terrestrial P accumulation, is discussed. The results from this study suggest that acidification induced P sorption in upland soils are not a contributing factor to decreases in stream TP concentration in the study catchments. Author Keywords: central Ontario, Hedley fractionation, phosphorus, podzols, soil acidification, sorption

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Southeast Asian studies
  • (-) = Eimers
  • (-) = Dillon

Filter Results

Date

2009 - 2019
(decades)
Specify date range: Show
Format: 2019/11/15

Author Last Name

Last Name (Other)

Degree

Degree Discipline