Graduate Theses & Dissertations

Corticosterone Promotes Development of Cannibalistic Morphology and Inhibits Tissue Regeneration in Axolotls (Ambystoma mexicanum)
Salamanders are capable of tissue regeneration throughout all life-stages, which requires the dedifferentiation of mature cells to regrow lost tissues. Dedifferentiation is promoted by degradation of the extracellular matrix by matrix metalloproteases, as well as lysosomal degradation of intracellular and cell-surface proteins that mark cells as part of a mature lineage. Salamanders are also capable of developing cannibalistic phenotypes, plastic traits that are elicited by environmental stressors that result in elevated circulating glucocorticoid (e.g., corticosterone) levels that underlie many fundamental adaptive changes in morphology. Interestingly, the direct effect of corticosterone on regeneration and the cannibalistic phenotype have yet to be examined. In the present thesis, axolotls (Ambystoma mexicanum) were exposed to exogenous corticosterone and 50% of the distal tail tissue was removed. The effects of high corticosterone levels on matrix metalloprotease (MMP-2, MMP-9) and lysosomal acid phosphatase (LAP) activity were assessed; these are two classes of enzymes which are markers of extracellular matrix and intracellular remodeling during regeneration, respectively. We found that elevated corticosterone levels inhibited tissue regeneration, by prolonging the dedifferentiation phase as indicated by increased LAP and reduced MMP-2 and MMP-9 activity. Elevated corticosterone levels also promoted the cannibalistic morphology and this effect was strongest among smaller individuals. Author Keywords: amphibian, cannibalistic morphology, corticosterone, dedifferentiation, regeneration, stress
Time-dependent effects of predation risk on stressor reactivity and growth in developing larval anurans (Lithobates pipiens)
The predator vs. prey dynamic is an omnipresent factor in ecological systems that may drive changes in life history patterns in prey animals through behavioural, morphological, and physiological changes. Predation risk can have profound effects on the life history events of an animal, and is influenced by the neuroendocrine stress response. Activation of the hypothalamic-pituitary-adrenal/interrenal axis, and the induction of stress hormones (e.g., corticosterone (CORT)) have been shown to mediate the onset of inducible anti-predator defensive traits including increased tail-depth, and reduced activity. The predator-prey relationship between dragonfly nymphs and tadpoles can be a powerful model system for understanding mechanisms that facilitate changes in the stress response in accordance with altered severity of risk. It has been well demonstrated early in tadpole ontogeny that increased corticosterone (CORT) levels, observed within three weeks of predator exposure, are correlated with increased tail depth morphology. However, the reactivity of the stress response in relation to the growth modulation in developing prey has yet to be fully explored. Accordingly, this thesis assessed the stress and growth response processes in tadpoles that were continuously exposed to perceived predation risk later in ontogeny. Continuous exposure of prey to predation risk for three weeks significantly increased CORT levels, and tail depth. However, tadpoles exposed to six weeks of predation risk acclimated to the presence of the predator, which was observed as a significant reduction of stressor-induced CORT levels. In addition, although increased tail depth has been attributed to predator defense, predator-naïve tadpoles began to display similar tail depth morphology as treated tadpoles at the six week time point. Thus, this thesis suggests that the stress response in lower vertebrate systems (e.g., tadpoles) may operate in a similarly complex manner to that observed in higher vertebrates (e.g., rats), for which severity of risk associated with the stressor aids in defining activity of the stress response. Moreover, the lack of morphological difference between treatments among tadpoles exposed later in ontogeny suggests that the mechanisms for inducing defenses are normal morphological traits in the development of the animal. This thesis paves the way for future research to elucidate the relationship between the neuroendocrine stress response and hormonal pathways involved in growth modulation in the presence of environmental pressures. Author Keywords: Acclimation, Corticosterone, Growth Modulation, Predation Risk, R. pipiens, Tadpole
Constraints on phenotypic plasticity in response to predation risk
Inducible defenses are plastic responses by an organism to the perception of predation risk. This dissertation focuses on three experiments designed to test the hypothesis that plastic ability is limited by energetic constraints. Chapter 1 provides a general introduction to phenotypic plasticity research and the theoretical costs and limitations affecting the expression of plastic traits. In Chapter 2, I tested the hypothesis that costs of early plasticity may be manifested by a reduced response to risk in later life stages. I found that amphibian embryos are able to detect and respond to larval predators, but that the energetic cost of those plastic responses are not equivalent among behavioural, growth, and morphological traits, and their expression differs between closely-related species. Chapter 3 explicitly examines the relationship between food resource availability and plasticity in response to perceived predation risk during larval development. Food-restricted tadpoles showed limited responses to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. Chapter 4 examines the influence of maternal investment into propagule size on the magnitude of the plastic responses to predation risk in resulting offspring. I found that females in better body condition laid larger eggs and that these eggs, in turn, hatched into larvae that showed greater morphological plasticity in response to predation risk. Maternal investment can therefore affect the ability of offspring to mount morphological defenses to predation risk. Last, Chapter 5 provides a synthesis of my research findings, identifying specific factors constraining the plastic responses of prey to perceived predation risk. Overall, I found constraints on plastic responses imposed by the current environment experienced by the organism (resource availability), the prior experience of the organism (predator cues in the embryonic environment), and even the condition of the previous generation (maternal body condition and reproductive investment). Together, these findings both provide new knowledge and create novel research questions regarding constraints limiting phenotypic variation in natural populations. Author Keywords: behaviour, inducible defense, Lithobates pipiens, morphometrics, phenotypic plasticity, predation risk

Search Our Digital Collections


Enabled Filters

Filter Results


2010 - 2020
Specify date range: Show
Format: 2020/01/21

Author Last Name

Last Name (Other)

Degree Discipline