Graduate Theses & Dissertations

Pages

New Interpretations from Old Data
Range contractions and expansions are important ecological concepts for species management decisions. These decisions relate not only to rare and endangered species but to common and invasive species as well. The development of the broad spatiotemporal extent models that are helpful in examining range fluctuations can be challenging given the lack of data expansive enough to cover the time periods and geographic extents needed to fit the models. Archival records such as museum databases and harvest data can provide the spatiotemporal extent needed but present statistical challenges given they represent presence-only location information. In this thesis, I used maximum entropy and Bayesian hierarchical occupancy algorithms fitted with archival presence-only records to develop spatiotemporal models covering broad spatial and temporal extents for snowshoe hare and Canada lynx. These two algorithm types are well suited for presence-only data records and can be adapted to include biological and physical processes, thus improving the ecological realism of the models. Using these modelling methods, I found the extent of occurrence (EOO) and area of occupancy (AOO) varied greatly over time and space for both snowshoe hare and Canada lynx, suggesting that management decisions for these species should include consideration of these variations. While the presence-only data were appropriate for model development and understanding changing values in EOO and AOO, it sometimes lacked the locational accuracy and precision needed to create fine scale ecological analyses, thus resulting in somewhat coarse but potentially relevant conclusions. Author Keywords: Area of occupancy, Bayesian hierarchical models, Canada lynx, Extent of occurrence, Presence-only data, Snowshoe hare
Range dynamics of two closely related felids
Species ranges are changing and the rate at which the climate is warming is faster than anything previously seen in the past, consequently species will need to adapt quickly, track the climate or perish. Cold adapted terrestrial species are the most vulnerable, because they are limited by the availability of land at the cold edge of their range. This means that many alpine, boreal and polar species essentially have nowhere to go as the climate warms. Habitat generalists are widely distributed across the globe and are highly adaptable to anthropogenic change. Our future biodiversity may only consist of several habitat generalists. The Canada lynx (Lynx canadensis) is a boreal species that has limited range expansion potential at the cold end of its range and its range has already contracted by 40%. The lynx has nowhere to go as climate warming progresses in this current century. Therefore, understanding the causes of its range contraction could enlighten us on conservation and management strategies that we might undertake as climate warms. My analyses indicated that the Canada lynx seems to have tracked the habitat that it is adapted to in more northern homogenous boreal forests and the bobcat (Lynx rufus), a habitat generalist, has simply replaced it in the south. Author Keywords: Anthropogenic Change, Competition, Connectivity, Lynx canadensis, Lynx rufus, Range change
SPATIAL AND TEMPORAL GENETIC STRUCTURE OF WOLVERINE POPULATIONS
Habitat loss and fragmentation can disrupt population connectivity, resulting in small, isolated populations and low genetic variability. Understanding connectivity patterns in space and time is critical in conservation and management planning, especially for wide-ranging species in northern latitudes where habitats are becoming increasingly fragmented. Wolverines (Gulo gulo) share similar life history traits observed in large-sized carnivores, and their low resiliency to disturbances limits wolverine persistence in modified or fragmented landscapes - making them a good indicator species for habitat connectivity. In this thesis, I used neutral microsatellite and mitochondrial DNA markers to investigate genetic connectivity patterns of wolverines for different temporal and spatial scales. Population genetic analyses of individuals from North America suggested wolverines west of James Bay in Canada are structured into two contemporary genetic clusters: an extant cluster at the eastern periphery of Manitoba and Ontario, and a northwestern core cluster. Haplotypic composition, however, suggested longstanding differences between the extant eastern periphery and northwestern core clusters. Phylogeographic analyses across the wolverine's Holarctic distribution supported a postglacial expansion from a glacial refugium near Beringia. Although Approximate Bayesian computations suggested a west-to-east stepping-stone divergence pattern across North America, a mismatch distribution indicated a historic bottleneck event approximately 400 generations ago likely influenced present-day patterns of haplotype distribution. I also used an individual-based genetic distance measure to identify landscape features potentially influencing pairwise genetic distances of wolverines in Manitoba and Ontario. Road density and mean spring snow cover were positively associated with genetic distances. Road density was associated with female genetic distance, while spring snow cover variance was associated with male genetic distance. My findings suggest that northward expanding anthropogenic disturbances have the potential to affect genetic connectivity. Overall, my findings suggest that (1) peripheral populations can harbour genetic variants not observed in core populations - increasing species genetic diversity; (2) historic bottlenecks can alter the genetic signature of glacial refugia, resulting in a disjunct distribution of unique genetic variants among contemporary populations; (3) increased temporal resolution of the individual-based genetic distance measure can help identify landscape features associated with genetic connectivity within a population, which may disrupt landscape connectivity. Author Keywords: conservation genetics, Holarctic species, landscape genetics, peripheral population, phylogeography, wolverine
effects of Dissolved Organic Matter (DOM) sources on Pb2+, Zn2+ and Cd2+ binding
Metal binding to dissolved organic matter (DOM) determines metal speciation and strongly influences potential toxicity. The understanding of this process, however, is challenged by DOM source variation, which is not always considered by most existing metal speciation models. Source determines the molecular structure of DOM, including metal binding functional groups. This study has experimentally showed that the allochthonous-dominant DOM (i.e. more aromatic and humic) consistently has higher level of Pb binding than the autochthonous-dominant DOM (i.e. more aliphatic and proteinaceous) by more than two orders of magnitude. This source-discrimination, however, is less noticeable for Zn and Cd, although variation still exceeds a factor of four for both metals. The results indicate that metal binding is source-dependent, but the dependency is metal-specific. Accordingly, metal speciation models, such as the Windermere Humic Aqueous Model (WHAM), needs to consider DOM source variations. The WHAM input of active fraction of DOM participating in metal binding (f) is sensitive to DOM source. The commonly-used f = 0.65 substantially overestimated the Pb and Zn binding to autochthonous-dominant DOM, indicating f needs to be adjusted specifically. The optimal f value (fopt) linearly correlates with optical indexes, showing a potential to estimate fopt using simple absorbance and/or fluorescence measurements. Other DOM properties not optically-characterized may be also important to determine fopt, such as thiol, which shows strong affinity to most toxic metals and whose concentrations are appreciably high in natural waters (< 0.1 to 400 nmol L-1). Other analytical techniques rather than Cathodic Stripping Voltammetry (CSV) are required to accurately quantify thiol concentration for DOM with concentration > 1 mg L-1. To better explain the DOM-source effects, the conditional affinity spectrum (CAS) was calculated using a Fully Optimized ContinUous Spectrum (FOCUS) method. This method not only provides satisfactory goodness-of-fit, but also unique CAS solution. The allochthonous-dominant DOM consistently shows higher Pb affinity than autochthonous-dominant DOM. This source-discrimination is not clearly observed for Zn and Cd. Neither the variability of affinity nor capacity can be fully explained by the variability of individual DOM properties, indicating multiple properties may involve simultaneously. Together, the results help improve WHAM prediction of metal speciation, and consequently, benefit geochemical modelling of metal speciation, such as Biotic Ligand Model for predicting metal toxicity. Author Keywords: Dissolved organic matter, Metal binding, Source, Windermere Humic Aqueous Model
successful invader in expansion
Researchers have shown increasing interest in biological invasions for the associated ecological and economic impacts as well as for the opportunities they offer to study the mechanisms that induce range expansion in novel environments. I investigated the strategies exhibited by invasive species that facilitate range expansion. Invasive populations exhibit shifts in life-history strategy that may enable appropriate responses to novel biotic and abiotic factors encountered during range expansion. The spatio-temporal scales at which these shifts occur are largely unexplored. Furthermore, it is not known whether the observed dynamic shifts represent a consistent biological response of a given species to range shifts, or whether the shifts are affected by the abiotic characteristics of the new systems. I examined the life-history responses of female round gobies Neogobius melanastomus across fine and coarser spatial scales behind the expansion front and investigated whether invasive populations encountering different environmental conditions (Ontario vs France) exhibited similar life-history shifts. In both study systems, I found an increase in reproductive investment at invasion fronts compared to longer established areas at coarse and fine scales. The results suggest a similar response to range shifts, or a common invasion strategy independent of environmental conditions experienced, and highlight the dynamic nature of an invasive population’s life history behind the invasion front. The second part of my research focused on the development of an appropriate eDNA method for detecting invasive species at early stages of invasion to enable early detection and rapid management response. I developed a simple, inexpensive device for collecting water samples at selected depths for eDNA analysis, including near the substrate where eDNA concentration of benthic species is likely elevated. I also developed a protocol to optimise DNA extraction from water samples that contain elevated concentration of inhibiters, in particular near-bottom samples. Paired testing of eDNA and conventional surveys was used to monitor round goby expansion along its invasion pathway. Round gobies were detected in more sites with eDNA, permitting earlier, more accurate, upstream detection of the expansion front. My study demonstrated the accuracy and the power of using eDNA survey method to locate invasion fronts. Author Keywords: Age-specific reproductive investment, DNA extraction, Energy allocation, Fecundity, Invasion front, Range expansion
Contemporary adaptive shifts in the physiology and life history of Pumpkinseed (Lepomis gibbosus) introduced into a warm climate
Contemporary evolution has the potential to help limit the biological impact of rapidly changing climates, however it remains unclear whether wild populations can respond quickly enough for such adaptations to be effective. In this thesis, I used the introduction of native North American Pumpkinseed (Lepomis gibbosus) into the milder climate of Europe over 140 years ago, as a 'natural' experiment to test for contemporary evolution to a change in climate in wild populations. In 2008, four outdoor pond colonies were established in central Ontario using adult Pumpkinseed from two native Canadian populations, and two non-native populations from northeastern Spain. By raising native and non-native Pumpkinseed within a common environment, this design minimized the impact of phenotypic plasticity on differential trait expression, and allowed me to interpret differences in the phenotype among pond-reared Pumpkinseed as evidence of genetic differences among populations. I demonstrated that Canadian and Spanish Pumpkinseed have similar thermal physiology except when acclimated to seasonally warm temperatures; trait differences are consistent with Spanish Pumpkinseed being better adapted to a warmer climate. Populations also had similar overwintering ecology, however some differences, such as higher survival under starvation conditions and greater energetic benefits associated with winter feeding, indicated that Canadian populations are better adapted to harsh winter conditions typical of the native range. Finally, I determined that the relatively fast life history expressed in wild European Pumpkinseed is largely driven by plastic responses to the local environment; however, the higher reproductive investment by European populations has a genetic basis. Most climate change research considers taxa that are expected to be negatively impacted by warming: my research demonstrates that even warm-tolerant taxa that are unlikely to experience strong climatic selective forces can respond to a warming environment through evolutionary changes. The potential for adaptive contemporary evolution in warm-tolerant taxa should be taken into account when predicting future ecosystem effects of climate change, and when planning management strategies for species introduced into novel climates. Author Keywords: climate change, contemporary evolution, fish, non-native species, thermal biology, winter ecology
Molecular Composition of Dissolved Organic Matter Controls Metal Speciation and Microbial Uptake
Aquatic contaminant mobility and biological availability is strongly governed by the complexation of organic and inorganic ligands. Dissolved organic matter (DOM) is a complex, heterogeneous mixture of organic acids, amino acids, lipids, carbohydrates and polyphenols that vary in composition and can complex to dissolved metals thereby altering their fate in aquatic systems. The research conducted in this doctoral dissertation addresses 1) how DOM composition differs between phytoplankton taxa and 2) how DOM composition affects metal speciation and its subsequent microbial bioavailability in laboratory and field conditions. To accomplish this, a series of analytical methods were developed and applied to quantify thiols, sulphur containing DOM moieties, and the molecular composition of DOM. The works presented in this thesis represents one of the first comprehensive and multipronged analyses of the impact of phytoplankton metabolite exudates on microbial metal bioavailability. This dissertation demonstrated the analytical versatility of high-resolution mass spectrometry as a tool for compound specific information, as well as having the capabilities to obtain speciation information of organometallic complexes. The work presented in this PhD strengthens the understanding compositional differences of both autochthonous and allochthonous DOM and their effects on metal biogeochemistry. Author Keywords: Dissolved Organic Matter, Mercury, Metal Accumulation, Phytoplankton, Spring Melts, Thiol
Characterization of Synthetic and Natural Se8 and Related SenSm Compounds by Gas Chromatography-Mass Spectrometry
Elemental selenium has been extensively quantitatively measured in sediments; however, its physical composition is largely unknown, despite it being the dominant selenium species in some reducing environments. Here, for the first time, it is shown that small, cyclic selenium compounds can account for a quantitatively-relevant fraction of the total elemental selenium present. A new method was developed to analyze for cyclooctaselenium (Se8) in both synthetic samples and selenium-impacted sediments. Despite some analytical limitations, this gas chromatography-mass spectrometry (GC-MS) method is the first GC-MS method developed to identify and quantify Se8 in sediments. Once this method was established, it was then applied to more complex systems: first, the identification of compounds in mixed selenium-sulfur melt solutions, and then the determination of SenSm in selenium-impacted sediments. Despite complications arising from pronounced fragmentation in the ion source, assignment of definitive molecular formulae to chromatographically-resolved peaks was possible for five compounds. Developing a fully quantitative method to obtain elemental ratio information can aid in the assignment of molecular formulae to chromatographically-resolved SeS-containing chromatographic peaks. Coupling the existing gas chromatography method to an inductively coupled plasma-mass spectrometer (ICP-MS) system should accomplish this. However, due to a number of complications, this was not completed successfully during the duration of this thesis project. High detection limits for sulfur, retention time discrepancies, and inconsistent injection results between the GC-MS and GC-ICP-MS system led to difficulties in comparing results between both analytical methods. Despite these limitations, GC-ICP-MS remains the most promising method for the identification and quantification of SenSm compounds in synthetic melt mixtures and selenium impacted sediments. Author Keywords: gas chromatography-mass spectrometry, sediments, selenium
An Investigation of Rare Earth Element Patterns and an Application of Using Zn and Cd Isotope Ratios in Oysters to Identify Contamination Sources in an Estuary in Southern China
Environmental monitoring and investigation of metal biogeochemical cycling has been carried out in the Pearl River Estuary (PRE), an important and complex system in Southern China. In this study, rare earth element (REE) patterns as well as isotope ratios (i.e., Zn and Cd) were evaluated as tools to identify contamination sources in environmental compartments (i.e., water and suspended particles (SP)) as well as in oysters collected from estuarine sites. Results show elevated concentrations (also called anomalies) of Pr, Nd, Dy and Ho, relative to other REE elements, in water samples, potentially from REE recycling and other industrialized activities in this area. Unlike water samples, no REE anomalies were found in SP or oysters, suggesting that the dominate REE uptake pathway in oysters is from particles. Secondly, site to site variations in Zn isotope ratios were found in water and SP, showing the complexity of the source inputs in this area. Also, in estuarine locations, larger spatially differences in Zn isotope ratios were found in water collected in wet season than those in dry season, which may due to mixing of different source inputs under the water circulations in different seasons. A series of laboratory experiments were conducted during which changes in Zn isotope ratios were measured during uptake under varying salinity and Zn concentrations and during depuration. Neither in vivo Zn transportation among the various tissues within the oysters nor water exposure conditions (i.e., different salinities or Zn concentrations) caused Zn isotopic fractionation in the oysters. Cd and Zn isotope ratios were also determined in oysters obtained from the PRE. Large variations in Cd and Zn isotope ratios suggest that oysters were receiving contaminants from different input sources within the PRE. A consistent difference (approximately 0.67‰) was observed for Zn isotope ratios in oysters collected from the east side of the PRE compared to those from sampling locations on the western side of the PRE, suggesting different Zn sources in these two areas. Ultimately, by combining biogeochemistry with physiology, this study represents a first attempt to assess pollution status, monitor contaminants using oysters and model/identify contamination sources using both REEs and metal isotope ratios. Author Keywords:
Eco-evolutionary Dynamics in a Commercially Exploited Freshwater Fishery
Fisheries assessment and management approaches have historically focused on individual species over relatively short timeframes. These approaches are being improved upon by considering the potential effects of both broader ecological and evolutionary processes. However, only recently has the question been raised of how ecological and evolutionary processes might interact to further influence fisheries yield and sustainability. My dissertation addresses this gap in our knowledge by investigating the role of eco-evolutionary dynamics in a commercially important lake whitefish fishery in the Laurentian Great Lakes, a system that has undergone substantial ecosystem change. First, I link the timing of large-scale ecological change associated with a species invasion with shifts in key density-dependent relationships that likely reflect declines in the population carrying capacity using a model selection approach. Then, using an individual-based model developed for lake whitefish in the southern main basin of Lake Huron, I demonstrate how ecosystem changes that lower growth and recruitment potential are predicted to reduce population productivity and sustainable harvest rates through demographic and plastic mechanisms. By further incorporating an evolutionary component within an eco-genetic model, I show that ecological conditions also affect evolutionary responses in maturation to harvest by altering selective pressures. Finally, using the same eco-genetic model, I provide a much-needed validation of the robustness of the probabilistic maturation reaction norm (PMRN) approach, an approach that is widely used to assess maturation and infer its evolution, to ecological and evolutionary processes experienced by exploited stocks in the wild. These findings together highlight the important role that ecological conditions play, not only in determining fishery yield and sustainability, but also in shaping evolutionary responses to harvest. Future studies evaluating the relative effects of ecological and evolutionary change and how these processes interact in harvested populations, especially with respect to freshwater versus marine ecosystems, could be especially valuable. Author Keywords: Coregonus clupeaformis, density-dependent growth, fisheries-induced evolution, individual-based eco-genetic model, Lake Huron, stock-recruitment
Habitat Characteristics, Density Patterns and Environmental Niches of Indo-Pacific Humpback Dolphins (Sousa chinensis) of the Pearl River Estuary and Eastern Taiwan Strait
The purpose of this thesis is to quantify the habitat characteristics, density patterns and environmental niches of two groups of Indo-Pacific humpback dolphins: Chinese white dolphins (CWD) of the Pearl River estuary (PRE), and Taiwanese white dolphins (TWD, =Taiwanese humpback dolphin, THD) found in the eastern Taiwan Strait (ETS). Much work has already been done on the habitat use of CWDs in parts of the PRE, so the purpose of my first two chapters was to advance knowledge of the TWD to a comparable level. Chapter 2 contains the first published description of the relatively shallow, inshore, estuarine habitat of the TWD. General environmental characteristics and observed group sizes were consistent with other populations of humpback dolphins, and group sizes were not correlated with the environmental variables measured during surveys. Chapter 3 investigated density patterns of TWDs, finding spatiotemporal heterogeneity across the study area. Humpback dolphin densities fluctuated from year to year, but some parts of the study area were consistently used more than others. Environmental characteristics again did not influence dolphin densities, though more dolphins than expected were sighted in waters adjacent to major land reclamations, which may be related to the location of these areas close to major rivers. In Chapter 4, niches of the TWD and CWDs found in the PRE were compared using species distribution models, which indicated significant niche overlap. This may be due to niche conservatism maintaining similar fundamental niches between the two groups since their historical split >10,000 years ago, or a result of the intrinsic biotic factors that influence occurrence data affecting the hypervolume dimensions of each realized niche in similar ways. Geographic predictions indicate that most of the TWD’s range has likely been surveyed, and that there may be connectivity between PRE humpback dolphins and at least one neighbouring putative population due to continuous predicted suitable habitat in waters that remain poorly surveyed. Overall, my thesis demonstrates that density patterns may vary over time, but on a broad temporal scale, these two allopatric groups of Indo-Pacific humpback dolphins have similar habitat requirements in geographically isolated, but environmentally similar locations. Author Keywords: density, habitat, Indo-Pacific humpback dolphin, niche overlap, Sousa chinensis, species distribution model
Effect Assessment of Binary Metal Mixtures of Ni, Cu, Zn, and Cd to Daphnia magna
Mixtures of metals occur in surface waters, toxicity of which has drawn world-wide attention due to their crucial role in both ecotoxicology and regulations. The present research was undertaken to study the acute toxicity of binary mixtures of Ni, Cu, Zn, and Cd to the freshwater organism, Daphnia magna. The experimental approach included single and binary metal toxicity tests based on the 48h acute toxicity bioassay of Environment Canada. The acute toxicity of single metals followed the order of Cd > Cu > Zn > Ni. Based on the calculated 48h EC50 value of single metals, a toxic unit (TU) approach was used to combine two metals in a binary mixture, in which 1TU was equal to the 48h EC50 value of a metal in single exposure. The toxicity of binary metal mixtures to D. magna followed the order of Cu-Cd > Cu-Zn > Zn-Cd > Cu-Ni > Zn-Ni > Cd-Ni, which demonstrated three types of toxicity (i.e., less than additive, additive, and greater additive). Predictions from additivity models (including concentration addition (CA) and independent action (IA) models), a generalized linear model (GLM), and a biotic-ligand-like model (BLM-like) were compared to the bioassay results. The CA and the RA models also predicted three types of toxicity of the binary metal mixtures (i.e., less than additive, additive, and greater than additive). However, the CA model mostly overestimated the toxicity of binary mixtures. Predictions from the GLM supported the inclusion of the interaction between two metals in a mixture to predict the toxicity of binary metal mixtures. The binary metal toxicity was also predicted using a BLM-like model based on the calculated concentrations of free ionic forms of the metals, affinity constants, and toxic potency of each metal. In this model, it was hypothesized that the toxicity of metal mixture is the result of competition of metals with Ca2+ at biotic ligands, which can lead to whole-body deficiency of Ca2+ in D. magna. The BLM-like model provided the toxic potency of single metals with the following order, Cu > Cd > Zn > Ni. Although the prediction of the BLM-like model was not in good agreement with the observed toxicity of binary metal mixtures, an overestimation of risk of mixture toxicity was obtained using this model, which could be promising for use in environmental risk assessment. Author Keywords: biotic ligand model, concentration addition, Daphnia magna, independent action, metal toxicity, modeling

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Morrison
  • (-) = Environmental and Life Sciences
  • (-) ≠ Master of Science

Filter Results

Date

2012 - 2032
(decades)
Specify date range: Show
Format: 2022/09/27

Degree